
SIMULTANEOUS RANGE-VELOCITY
PROCESSING AND SNR ANALYSIS OF

AFIT’S RANDOM NOISE RADAR

THESIS

T. Joel Thorson, Captain, USAF

AFIT/GE/ENG/12-40

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the United States Government. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.

AFIT/GE/ENG/12-40

SIMULTANEOUS RANGE-VELOCITY PROCESSING AND SNR ANALYSIS OF

AFIT’S RANDOM NOISE RADAR

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

T. Joel Thorson, B.S.E.E., M.A. Organizational Management

Captain, USAF

March 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT / GE/ ENG / 12-40

SIMULTANEOUS RANGE-VELOCITY PROCESSING AND SNR ANALYSIS OF
AFIT'S RANDOM NOISE RADAR

Approved:

T. Joel Thorson, B.S.E.E. , M.A. Organizational Management
Captain, USAF

;2. { 1-~L ZO/ 2.
Date

Date

Date

AFIT/GE/ENG/12-40

Abstract

A United States Air Force autonomous vehicle sensor must be compatible with

other electromagnetic devices, accurately detect and track obstacles, and be persistent

in all types of weather and harsh environments. Additionally, the sensor must be low-

power due to limited system power availability and offer a low probability of detection

to maintain a covert posture. The Air Force Institute of Technology random noise

radar (RNR) has been shown to possess all of these favorable characteristics, but has

not been configured for an autonomous vehicle collision avoidance application. Two

primary research objectives include advancing the RNR signal processing algorithm

and modeling capability, with an overarching goal of performing collision avoidance on

an autonomous vehicle. These objectives are addressed using analytical, simulated,

and measured results.

The current RNR signal processing algorithm does not perform simultaneous range

and velocity (range-velocity) processing of the receive signal. The continuous, ban-

dlimited, thermal noise transmit signal has a high fractional bandwidth that makes

classical Doppler processing impractical. A previous research effort implemented a 2D

time domain processing algorithm, but the lengthy signals required for 2D process-

ing made real-time range-velocity processing out of reach. Additionally, the random

noise signal eliminates a priori reference signal generation, adding to the real-time

processing requirements. The first research objective is aimed at reducing the mem-

ory required for 2D time domain processing in order to distribute the processing

algorithm across hundreds of processors on a GPU. Distributed processing reduces

the overall 2D processing time and the feasibility of a near real-time implementation

is studied.

iv

The second research objective consists of improving a Simulink® model of the

AFIT RNR. Each component of the AFIT RNR, as well as the target environment, is

modeled and compared to measured results. A robust model enables efficient signal-

to-noise ratio (SNR) analysis of the RNR at all points within the radar system. A

thorough SNR analysis is foundational to determining the RNR detection capabilities

of the RNR and will benefit future development for collision avoidance applications.

v

Acknowledgements

First, and above all else, I give thanks and praise to the one from whom all

blessings are given. Thank you, God, for continually giving generously to me and

my family. Thank you for giving your son, Jesus Christ, who paid the price that

you knew I could not pay. To my beautiful bride...thank you for your encouragement

and uplifting words that motivate me from the core. Thanks for your commitment

to an eternal cause and for your investment in my life and in the life of our kids. To

the four greatest kids in the world...thank you for putting up with me while I was

gone early in the mornings and late at night. Thank you for welcoming me home

each day with big hugs and happy smiles. Every day I am proud of each of you. To

my parents...thank you for instilling in me a desire to learn and teaching me how

to be a man of character. A heartfelt thanks goes to my advisor, whose counsel

extended beyond the research. Thank you, Lt Col Akers, for modeling your guidance

after the Wonderful Counselor, and thank you for the time you committed to me and

to all the LORE students at AFIT. Thanks also to the top-notch faculty at AFIT

who take people like me who can’t even spell “radar” and turn us into functioning

engineers. Finally, I would like to give a shout-out to the guys in the RAIL. The

life conversations, sports talk, jokes, study sessions, and brainstorming were vitally

important to my personal and academic growth. The list of people that have invested

in me during this research effort is amazingly long. I’m humbled by your investment

and will deeply value each of you always.

T. Joel Thorson

vi

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . ix

List of Tables . xii

I. Introduction . 1

1.1 Problem Description . 1
1.2 Research Motivation . 2
1.3 Research Goals . 4
1.4 Background . 5
1.5 Organization of Thesis . 6

II. Theory . 7

2.1 Chapter Overview . 7
2.2 Radar . 7

2.2.1 Classical Pulse Radar . 7
2.2.2 Radar Configurations . 11

2.3 Noise Radar . 12
2.3.1 Continuous Wave Radar . 12
2.3.2 Noise . 14
2.3.3 Ultra-wideband Waveform . 16
2.3.4 Noise Waveform . 17

2.4 Signal Processing . 18
2.4.1 Correlation . 20
2.4.2 Matched Filtering . 20
2.4.3 Ambiguity Function . 21
2.4.4 Resolution . 23

2.5 AFIT Random Noise Radar . 24
2.5.1 Simultaneous Range and Velocity Processing 25
2.5.2 AFIT RNR Signal-to-Noise Ratio 31
2.5.3 Pre-Processing SNR . 32
2.5.4 Post-Processing SNR . 33

2.6 Chapter Conclusion . 36

vii

Page

III. System Description and Methodology . 37

3.1 Chapter Overview . 37
3.2 System/Equipment Description . 37

3.2.1 Transmitter . 37
3.2.2 Receiver Front End . 39
3.2.3 Direct Conversion Receiver . 39

3.3 2D Processing Performance . 41
3.3.1 Binary ADC . 41
3.3.2 FFT Segmentation . 43

3.4 Software Model . 46
3.4.1 Previous Work . 47
3.4.2 Necessary Changes . 48

3.5 Performance Experiment . 50
3.5.1 Equipment and Setup . 50
3.5.2 Experiment Procedures . 52

3.6 Chapter Conclusion . 56

IV. Results . 57

4.1 Chapter Overview . 57
4.2 2D Processing Results . 57

4.2.1 Binary ADC Results . 57
4.2.2 FFT Segmentation Results . 63
4.2.3 2D Processing Analysis . 65

4.3 SNR Analysis Results . 66
4.3.1 Simulink® Model Results . 66
4.3.2 SNR Analysis . 75

4.4 Chapter Conclusion . 80

V. Conclusions . 81

5.1 Chapter Overview . 81
5.2 Research Goals . 81
5.3 Results and Contributions . 81
5.4 Future Work . 82

5.4.1 2D Processing Future Work . 82
5.4.2 RNR Model Future Work . 83
5.4.3 Collision Avoidance Future Work . 83

Appendix A. Simulink Model Results . 85

Appendix B. MATLAB Code . 100

Bibliography . 139

viii

List of Figures

Figure Page

2.1. Range estimation in pulse radar . 8

2.2. Range ambiguity in pulse radar . 11

2.3. Radar configurations . 13

2.4. Continuous wave versus pulse radar power 14

2.5. Range estimation in continuous wave radar 15

2.6. Thumbtack ambiguity function . 16

2.7. AFIT’s digital receiver compared to heterodyne receiver 19

2.8. AFIT NoNET block diagram . 25

2.9. Time domain velocity estimation . 27

2.10. Measurement window of ingressing target 28

2.11. Velocity resolution compared to fℎ and T 30

2.12. LNA frequency response . 33

3.1. AFIT RNR block diagram . 38

3.2. AFIT RNR transmit path . 38

3.3. AFIT RNR receive path . 39

3.4. FFT segmentation . 45

3.5. LPA reflection curve . 48

3.6. LPA gain curve . 49

3.7. Performance experiment setup . 51

3.8. target setup . 51

3.9. Measurement points on RNR . 53

3.10. Standard gain horn frequency response . 54

ix

Figure Page

3.11. Standard gain horn experiment setup . 55

3.12. Standard gain horn with target setup . 55

4.1. Compressed receive signal due to target velocity 60

4.2. 2D processing results with binary ADC . 61

4.3. Eight-bit ADC SNR . 62

4.4. Binary ADC SNR . 62

4.5. AFIT RNR Simulink® model . 66

4.6. AFIT RNR simulated transmit path . 67

4.7. AFIT RNR transmit signal . 68

4.8. Environment subsystem . 69

4.9. Receive signal with target at 6 m . 70

4.10. Receive signal with target at 8 m . 70

4.11. Measured noise floor of AFIT RNR . 71

4.12. Signal after receive path with target at 8 m 72

4.13. HH and VV polarization configuration . 73

4.14. Measured receive signal using HH and VV polarization 74

4.15. Measured correlation results using HH and VV polarization 74

4.16. Measured and simulated correlation results 75

4.17. SNR as a function of frequency using standard gain horns 76

4.18. Post-processing SNR . 79

A.1. Unit 3 transmit path . 85

A.2. Unit 3, 6 meter target, HH polarization, receive path 86

A.3. Unit 3, 6 meter target, VV polarization, receive path 87

A.4. Unit 3, 8 meter target, HH polarization, receive path 88

A.5. Unit 3, 8 meter target, VV polarization, receive path 89

x

Figure Page

A.6. Unit 3, 6 meter target, HH polarization, receive
path, Standard Gain Horn . 90

A.7. Unit 3, 6 meter target, VV polarization, receive
path, Standard Gain Horn . 91

A.8. Unit 3, 8 meter target, HH polarization, receive
path, Standard Gain Horn . 92

A.9. Unit 3, 8 meter target, VV polarization, receive
path, Standard Gain Horn . 93

A.10. Receiver output comparison . 94

A.11. Unit 5 transmit path . 95

A.12. Unit 5, 6 meter target, HH polarization, receive path 96

A.13. Unit 5, 6 meter target, VV polarization, receive path 97

A.14. Unit 5, 8 meter target, HH polarization, receive path 98

A.15. Unit 5, 8 meter target, VV polarization, receive path 99

xi

List of Tables

Table Page

3.1. Processing PC specifications . 44

3.2. Parallel processing hardware . 47

3.3. SNR receive path measurement points . 53

4.1. Binary ADC results . 58

4.2. SNR comparison . 62

4.3. Computer 1 2D processing times . 63

4.4. Computer 2 2D processing times . 64

4.5. Summary of 2D processing times . 64

4.6. SNR results with LPAs . 77

4.7. SNR results with standard gain horn . 77

xii

SIMULTANEOUS RANGE-VELOCITY PROCESSING AND SNR ANALYSIS OF

AFIT’S RANDOM NOISE RADAR

I. Introduction

1.1 Problem Description

Autonomous vehicles must be outfitted with sensors to provide the obstacle iden-

tification and warning information required for collision avoidance. These sensors

must be able to precisely estimate the location and relative velocity of nearby objects

to determine if course correction is required to avoid unwanted collision. Addition-

ally, each sensor must be able to operate in the presence of other sensors and vehicle

systems. Electromagnetic compatibility between the sensors and vehicle systems is

critical to reliable vehicle operations. To be desired by design engineers, the sensor

must be small, light-weight, low-power, electromagnetically compatible, and accurate.

The Air Force Institute of Technology (AFIT) random noise radar (RNR) offers a low

peak power, accurate and compatible solution. However, the AFIT RNR size, weight

and signal processing algorithm are not practically configured for an autonomous

vehicle collision avoidance application.

Research on the AFIT RNR began in 2007 with Schmitt and focused primarily

on through-the-wall (TTW) imaging using a network of multistatic radar nodes [27,

33, 34]. The research continued with enhancements to the network of noise radars,

including the development of a basic software model [30]. Recently, the research was

extended to include a thorough characterization of the AFIT RNR’s ability to process

range and velocity information simultaneously [18]. Although real-time simultaneous

1

processing of range and velocity has been proven using a RNR with a hardware

defined correlation receiver [17, 25, 26], it has not been demonstrated using the direct

conversion receiver (DCR) implemented in the AFIT RNR.

The inherent qualities of the AFIT RNR, including its low peak power, electro-

magnetic compatibility, and accurate waveform, point to a promising future as a

collision avoidance sensor. A problem arises, however, in that the size, weight, and

signal processing algorithm used in the AFIT RNR does not lend the system to a

practical collision avoidance application. The form factor and weight must be re-

duced, the algorithm must interface with the control system of the vehicle to ensure

timely course corrections, and the system must be able to simultaneously process

range and velocity information in near-real time in order to take full advantage of the

noise radar capabilities as a collision avoidance sensor.

1.2 Research Motivation

Radar, electro-optical (EO), and infrared (IR) systems are the three primary ca-

pabilities used by the United States Air Force (USAF) for remote sensing. EO and

IR sensors are passive systems that use external stimuli to illuminate an environment

in order to glean information from that environment. Unlike EO and IR systems,

radar is an active sensor that emits an electromagnetic (EM) wave and receives the

wave’s return echo to gather information about an environment. Radar has a distinct

advantage over passive systems in that it can search, track, and/or image a desired

scene in all weather conditions, both day and night. While EO sensors can operate

only in the presence of a light stimulus, and IR sensors can be significantly impacted

by weather and temperature conditions, radar systems do not have such limiting con-

straints. Radar, however, has a number of distinct disadvantages. Classical pulse

radars require high peak power to achieve significant detection range, resulting in

2

limited electromagnetic compatibility with other collocated systems. Additionally,

the periodicity of the EM wave along with its high peak power make classical pulse

radar easily detectable by uncooperative observers, complicating covert operations.

With its low peak power and continuous, random signal, the random noise radar

can eliminate the primary limitations of classical radar by offering electromagnetic

compatibility and a covert posture while maintaining the ability to gather target

information in any environment.

Collision avoidance sensors are a necessary evil for autonomous vehicle designers.

An autonomous vehicle for any practical application, particularly in the USAF, is not

designed solely to move from point A to point B. It is designed to carry a payload

and perform a mission. The fact that a USAF vehicle is autonomous ensures that

the mission can be carried out without placing forces in harm’s way. Autonomous

vehicle designers face an engineering problem. They must design the system to travel

according to the mission plan while avoiding obstacles, but they must do it without

sacrificing the capabilities of the primary mission payload. With a limited amount

of size, weight and power available to the autonomous vehicle, the requirements of

the collision avoidance sensors often conflict with the requirements of the mission

payload. Additionally, in the case of a remote sensing payload, the collision avoidance

sensors must not interfere with the payload sensors. They must be electromagnetically

compatible.

Researchers have shown that a random noise radar can be used for automobile

collision avoidance [21, 23]. Lukin [23], who demonstrated an experimental collision

avoidance system in an urban environment, concluded that noise radar technology

offers the most suitable solution for automobile collision avoidance systems. He based

his conclusion on the fact that noise radars require low power, can be constructed

in a small package, can operate in the presence of other radar equipped vehicles,

3

are immune to electromagnetic interference, are low cost and light weight, and offer

excellent resolution.

The AFIT RNR has been proven as a low-power, accurate, and covert sensor [27,

30, 33]. Configuring the AFIT RNR for autonomous vehicle collision avoidance could

give the vehicle designer a capable solution to the tradeoff between obstacle avoidance

and mission payload sensors. The AFIT RNR has the potential to provide accurate

and compatible sensor information for autonomous vehicle collision avoidance without

placing a significant burden on the size, weight, or power available to the vehicle

systems.

1.3 Research Goals

In order to be used for collision avoidance on an autonomous vehicle, the form

factor and weight of the AFIT RNR hardware must be reduced. Additionally, the

signal processing algorithm must be modified to support collision avoidance. In a

parallel research effort, Ludwig is focused on exploiting antenna and other hardware

modifications suitable for autonomous vehicle applications [20]. The research effort

presented here, however, will focus on optimizing the signal processing algorithm for

collision avoidance. The primary objectives of this research effort include:

1. Minimize the simultaneous range and velocity processing time in the AFIT RNR

through parallelization.

2. Characterize the AFIT RNR in terms of the signal-to-noise ratio (SNR).

The secondary objectives include:

1. Configure the signal processing algorithm for parallel processing on a field-

programmable gate array (FPGA) or graphics processing unit (GPU).

2. Update the AFIT RNR Simulink® model to match measured data.

4

These objectives will help provide the trade-space analysis for advancing the AFIT

RNR toward a practical collision avoidance application.

1.4 Background

The term “random noise radar (RNR)” is also referred to in literature as noise

radar technology (NRT), random signal radar (RSR), and simply noise radar. Re-

gardless of the label, random noise radars represent a class of radars that use an

electromagnetic wave with the characteristics of thermal noise to illuminate a target

within its surrounding environment. The concept of noise as a random waveform is

not new, tracing its roots to Christian Huelsmeyer in 1904, who used noise in his

radar precursor, the “telemobiloscope” [12], which detected ships at ranges up to 3

km in all weather conditions [13]. Later, in 1957 and 1959, Richard Bourret and B.

M. Horton introduced coherency into the noise radar receiver [22]. Horton discov-

ered that a noise waveform could be used to eliminate range and Doppler ambiguities

by correlating the return signal with a time delayed replica of the transmitted noise

waveform. Although some advances in noise radar technology occurred over the next

three decades [10], there was comparatively little research in that time period due

to the highly complex components required for correlation signal processing and the

lack of efficient noise waveform generators. In the 1990s and 2000s, advances in digi-

tal signal processing (DSP) hardware and software made advancement in noise radar

technology feasible.

Today, noise radar researchers are finding numerous applications for the capa-

bility, including synthetic aperture radar (SAR) imaging [9], inverse SAR (ISAR)

imaging [6], through-the-wall (TTW) imaging and surveillance [15, 34], sub-surface

detection [43], foliage penetration [42], and even as an automobile collision warning

sensor [21, 23]. The fundamental concepts of noise radar are now widely known and

5

recent research is focused on application specific design requirements that will make

the RNR a suitable alternative to classical radar systems [36].

1.5 Organization of Thesis

Further discussion of the foundational principles of the AFIT RNR and the theo-

retical development aimed at achieving the research goals is found in Chapter 2. In

Chapter 3, the simulation and experimental methodology used in this research effort is

presented. Chapter 4 provides a detailed analysis of the results uncovered during the

experimental effort along with a performance and utility assessment. The conclusions

are discussed in Chapter 5 and include recommendations for future research.

6

II. Theory

2.1 Chapter Overview

In this chapter, the principles that make up the foundation of noise radar are

presented, specifically in the context of the AFIT RNR. The chapter begins with a

tutorial of basic radar concepts and transitions to continuous wave, ultra-wideband

noise radar. It continues with a discussion of the AFIT RNR’s ability to simulta-

neously process range and velocity information, summarizing previous research and

results. Finally, the chapter outlines the underlying principles supporting the SNR

analysis of the AFIT RNR.

2.2 Radar

Before entering into a discussion of current noise radar technology and the AFIT

RNR, it is important to understand the basic concepts of radar. The term radar

was originally an acronym for radio detection and ranging, but with the development

of its extensive capabilities, radar is no longer used for just detection and ranging.

Today, it is widely used for velocity estimation, imaging, and many other functions.

This section highlights the classical pulse radar, the range and velocity estimation

capabilities of radar, and general radar configurations.

2.2.1 Classical Pulse Radar.

In a classical monostatic pulse radar, a short burst of energy is transmitted into

the environment followed by an extended listen time. If a target is present in the

direction of propagation, the wave reflected from the target is received and compared

to the transmitted wave to extract target information. The time between transmit

pulses is known as the pulse repetition interval (PRI).

7

As can be seen in Figure 2.1, the time it takes for the pulse to travel to the target

and back to the receiver, ΔT , is known as the two-way transit time. Because the

velocity of EM waves in free space is known to be the speed of light (c ≈ 3 × 108

m/s), the range, R, to the target can be extracted from the two-way transit time,

and is given by the relationship

R =
cΔT

2
. (2.1)

For a stationary target, one pulse can determine the range to the target, although

multiple pulses will increase confidence that the return signal is not noise resulting in

a false alarm.

Figure 2.1. The distance to the target can be derived from the two-way transit time
ΔT .

Velocity information can be extracted by comparing the range of the target over

multiple pulses. Radial velocity, or target velocity in the direction of the antenna line

of sight, can be deduced if the measured range varies from pulse to pulse. Similarly,

radial velocity can be derived from the difference between the transmit and receive

frequencies, called the Doppler frequency, of a single pulse. Because all measurable

8

targets (even supersonic aircraft) travel at speeds much lower than the speed of light,

the relationship between radial velocity and Doppler frequency is given by

vr = v cos ≈ fd�

2
for ∣v∣ ≪ c, (2.2)

where v is the velocity of the target, vr is the radial velocity, is is the angle difference

between the velocity vector and the radar line of sight, fd is the Doppler frequency,

and � is the wavelength of the transmitted signal [31]. The Doppler frequency can

be extracted only from a phase-coherent system, meaning the phase of the received

signal with respect to the transmit signal must be known. Many radars use the same

local oscillator (LO) for frequency conversion and for mixing in both the transmitter

and receiver in order to maintain phase coherence.

A radar’s performance is characterized by the radar range equation (RRE). But

to understand the RRE, the SNR must first be defined. The SNR is used by system

designers to compare the received signal power, Pr, with the system noise power, Pn.

The received signal power, Pr is defined as

Pr =
PtGtGr�

2�

(4�)3R4Ls
, (2.3)

where Pt is the peak transmit power, Gt and Gr represent the transmit and receive

antenna gain, � is the radar cross section (RCS) of the target, and Ls is the system

losses. Similarly, the system noise power, Pn, is often defined as

Pn = kT0BF, (2.4)

where k is Boltzmann’s constant (1.38e−23 Joules/K), T0 is the standard temperature

(290 K), B is the instantaneous receiver bandwidth in Hz, and F is the unitless

9

system noise figure. SNR, then, is the ratio between the received signal power and

the system noise, defined as

SNR =
Pr
Pn

=
PtGtGr�

2�

(4�)3R4kT0BFLs
. (2.5)

By solving (2.5) for range, the maximum distance that an object can be detected

by the radar is defined as the RRE and given by

Rmax = 4

√
PtGtGr�2�

(4�)3kT0BFLs(SNRmin)
, (2.6)

where SNRmin is the minimum detectable SNR of the system. This is an important

relationship for radar designers. If greater detection range is desired, then significant

improvements to antenna gain or transmitted power must be realized. The other

parameters in (2.6) are often fixed and cannot be altered to improve range.

Pulse radars can be fabricated using analog components, making them producible

during the early years of radar. Many capabilities and applications have grown from

the pulse radar, but as the technology has developed, so has the exploitation of pulse

radar. Even simple electronic support measurement devices can detect pulse radars

[27], making covert operations with the traditional pulse radar nearly impossible.

Additionally, pulse radars require high peak power to achieve significant detection

range. From (2.6), it can be seen that range is determined by the fourth root of

power. Doubling the peak power will increase the maximum range of the radar by

only 19%. To double the range, power must be multiplied by a factor of 16. Increasing

detection range requirements can quickly force changes to the system power supply

and can result in electromagnetic interference (EMI) with other devices operating in

the same frequency range.

Another significant disadvantage of classical pulse radar is the range and Doppler

10

ambiguity inherent in pulse radar. As a simple example of range ambiguity, consider

Figure 2.2. The return echo of the first pulse occurs after the second pulse has been

transmitted. The system may not know if this is the return from a distant target

reflecting the first pulse, or the return of a near target reflecting pulse two. Many

pulse coding techniques have been developed to resolve this type of range and Doppler

ambiguity, but it is inherent in pulse systems.

Figure 2.2. It is ambiguous whether this return echo is from the first pulse or the
second pulse.

2.2.2 Radar Configurations.

Monostatic and bistatic are the two basic radar configurations [31]. Monostatic

configurations have the transmitter and receiver collocated, and in many pulse radar

applications, the transmit and receive subsystems share the same antenna. Mono-

static systems have the advantage of a single clock source for the transmitter and

receiver to ensure coherency. Additionally, the signal processing can be accomplished

locally with no need to pass the reference signal to a remote system. The monostatic

configuration, however, has a number of disadvantages. First, good separation must

exist between the transmit and receive signals. In a pulse radar, this separation can be

11

accomplished with a circulator or switch to protect the sensitive receiver components

from the high transmit power. Second, it can be difficult to detect stealth targets,

because the target is often designed to avoid backscatter and reflect the signal in di-

rections away from the radar. On the other hand, a bistatic radar can be configured

to collect signals that reflect from stealth targets by spatially separating the receive

antenna from the transmit antenna. This configuration requires the receiver to have

remote access to the reference signal.

A third radar configuration, multistatic, is simply a combination of monostatic

and bistatic configurations. In a multistatic system, there can be any number of

combinations of monostatic antennas as well as bistatic antennas to decrease detec-

tion losses caused by signal fading, multi path, and target scattering. Multistatic

configurations also have the advantage of being able to estimate a target’s shape [31].

Figure 2.3 illustrates the various configurations implemented in a radar system.

2.3 Noise Radar

An alternative to classical pulse radar is continuous wave, ultra-wideband noise

radar. The distinguishing features of this type of radar are described in this section.

2.3.1 Continuous Wave Radar.

Although the first radars used a continuous waveform, pulse radars quickly grew in

popularity. Continuous wave (CW) radars later made a resurgence as an alternative to

the high power pulse wave radars [31]. Instead of short bursts of energy, a continually

transmitting signal is emitted, resulting in a continuous receive signal. As defined

earlier, the monostatic radar configuration uses a single antenna for both transmit

and receive. In the case of CW radars, a single antenna is not possible because the

radar is continually transmitting and receiving. The transmit antenna, however, can

12

(a)

(b)

(c)

Figure 2.3. A radar system can be configured as (a) monostatic, (b) bistatic, or (c)
multistatic.

be collocated with a separate receive antenna, resulting in a bistatic configuration

that functions in a similar manner as the monostatic configuration. Many authors

13

define this bistatic configuration, with a small separation between the transmit and

receive antennas, as monostatic or near-monostatic. In this study, it will be defined

as a near-monostatic radar configuration.

The major advantage of the continuous waveform is that it can operate with

low peak power, as seen in Figure 2.4. Because CW radars operate at such low

peak power, they are often undetected by uncooperative receivers. CW radars are

an excellent choice for low-power Doppler radars, such as police and other velocity

detectors. As can be seen in Figure 2.5, the continuous wave signal requires some

form of modulation to measure range. Frequency or phase modulation is often used

to vary the characteristics of the wave over time, placing a timing mark on the wave

used for reference in determining range [31].

Figure 2.4. Power of a pulsed wave radar compared to an equal energy CW radar signal
with similar detection capabilities. (Adopted from [29])

2.3.2 Noise.

Random white Gaussian noise (WGN) may be used to modulate a CW signal in

order to extract range information. Noise radars have a number of characteristics

that are desired for niche applications. A significant advantage is that its aperiodic,

random waveform gives the RNR a low probability of intercept (LPI). Most receivers

are designed to filter or suppress noise, so a low-power noise waveform would not

14

Figure 2.5. Without frequency or phase modulation, a continuous wave signal cannot
determine range.

trigger a detect in the uncooperative receiver, meaning the radar can see without

being seen. Additionally, RNR systems are resistant to electromagnetic interference,

allowing operation in close proximity to other systems in the same frequency band,

including other noise radars [36].

A random noise signal, by definition, has unlimited bandwidth and thus it trans-

mits over the entire frequency spectrum. However, due to constraints on hardware

and processing, the signal is band-limited by design [27]. Although the transmitted

signal can be truly random, it is known to the system which compares the received

signal to the transmitted signal. A random signal will not correlate with another

random signal unless they are exact replicas, in which case the correlation is a max-

imum [38], meaning there is no ambiguity in range or velocity, as can be seen in

Figure 2.6. More detail on correlation and ambiguity in the RNR will be provided in

the following sections.

15

Figure 2.6. The UWB RNR offers theoretical accuracies in both range and Doppler [18].

2.3.3 Ultra-wideband Waveform.

Many radar systems operate at a given frequency or at a very narrow range of

frequencies. A number of systems, however, are designed to operate across a wide

range of frequencies offering the advantage of improved target range resolution [35].

Instead of being defined by a single carrier frequency, fc, wideband systems are defined

by a range of frequencies from flow to fℎigℎ. Ultra-wideband (UWB) systems are

generally characterized to have over 20-25% fractional bandwidth, Bfractional, defined

as

Bfractional =
2(fℎigℎ − flow)

fℎigℎ + flow
. (2.7)

Noise is inherently UWB because random oscillations of electron carriers occur

at all measurable frequencies. Wide bandwidth leads to better range resolution. As

bandwidth increases, the radar’s ability to distinguish two targets increases. This

16

relationship is shown to be

ΔR =
c

2B
, (2.8)

where ΔR is the minimum resolvable target spatial separation. From (2.8), it can be

seen that large bandwidth will lead to fine range resolution, making range estimates

highly accurate [13].

2.3.4 Noise Waveform.

For many noise radars, the transmit waveform, s(t), is the band-limited output of

a thermal noise generator and is statistically modeled as band-limited white Gaussian

noise (WGN). The noise amplitude has a Gaussian probability density function with

a mean of zero. The power spectral density is uniform, or white, is distributed evenly

across all frequencies, and is wide sense stationary (WSS) [11].

In the case of a narrowband radar, the receive signal is a delayed and frequency

shifted version of the transmit signal given by

sR(t) = As(t− �)ej2�fdt+j�, (2.9)

where � = 2R/c represents the delay caused by the distance between the radar and the

target. The general form of the receive signal scales the transmit signal in amplitude

by A, and the phase shift given by ej2�fdt+j� results from the relative motion between

the target and the radar. However, for a wideband radar, the receive signal is shown

to be [40]

sR(t) = As(�(t− �)), (2.10)

17

where � is due to the relative motion between the target and the radar is modeled

by a time scale defined as

� =
c− v
c+ v

. (2.11)

For simplicity, the amplitude scaling factor is ignored, and because v ≪ c, the receive

signal is often represented as

sR(t) ∝ s(�(t− �)) = s(�t− ��) = s

(
�t−

(
c− v
c+ v

)(
2R

c

))
= s

(
�t− 2Rc

c2 + cv
− 2Rv

c2 + cv

)
≈ s(�t− �)

sR(t) ∝ s(�t− �). (2.12)

2.4 Signal Processing

Noise radars transmit continuously and randomly over a wide range of frequencies

with no carrier frequency. The AFIT RNR only samples the real part of the transmit

and receive signals, resulting in recieved signals that are not phase-coherent with the

transmitted signals. Narayanan developed a method to inject phase coherency into

a noise radar by using heterodyne correlation to compare the received signal with a

replica of the transmit signal [25]. The transmit signal is delayed in time and shifted

in frequency until a match occurs, making known the range and velocity information

of the target.

The AFIT RNR simply filters and amplifies the RF receive signal before passing it

to the analog-to-digital converter (ADC), thus implementing a fully-digital correlation

receiver called the direct-conversion receiver (DCR). The DCR offers a number of

benefits ranging from simplicity of design to minimal additive noise, but the ADC

only gathers amplitude samples and the phase information of the transmit signal is

18

not known to the DCR, maintaining the phase-incoherence of the AFIT RNR [27, 30].

A comparison of Narayanan’s coherent heterodyne receiver with AFIT’s noncoherent

digital receiver is illustrated in Figure 2.7. Whether implementing the AFIT DCR,

or Narayanan’s heterodyne receiver, the foundation of noise radar signal processing

is detailed in this section.

(a)

(b)

Figure 2.7. Comparison of (a) the heterodyne receiver as outlined in [25] and (b)
AFIT’s fully digital correlation receiver architecture [30].

19

2.4.1 Correlation.

Physical constraints of hardware and limited processing capabilities force CW

noise waveforms to be processed in intervals. The time of each interval is known as

the integration time, or measurement window, T . In order to satisfy the Nyquist

criteria, the signal must be sampled at a rate fs = 2B, leading to a signal of length

N = 2BT (2.13)

for each interval that has a measurement window, T .

Correlation of two signals is simply a measure of how well the two signals resemble

each other. The time delay between the transmit signal and its echo can be estimated

by finding the maximum of the cross-correlation between the received signal, sR(t)

and the complex conjugate of the delayed transmit signal, s(t), given by [37]

y(�) =

∫ T

t=0

sR(t)s∗(t− �)dt. (2.14)

Essentially, the time delay of the replicated transmit signal is varied until a match

occurs. The match will result in a peak of the correlation function at time t = � ,

which corresponds to the two-way transit time of the signal used to estimate range

as in (2.1). Noise is an aperiodic stochastic process that will only correlate when it

is compared to itself. Only a delayed version of the transmit signal will result in a

correlation. All other interfering noise is independent and will not correlate, allowing

the signal processor to identify a weak echo signal in a noisy environment.

2.4.2 Matched Filtering.

To achieve the fundamental goals of detection, tracking, and/or imaging, the

radar is often designed to maximize SNR. Maximizing SNR can be accomplished by

20

applying a filter to the received signal that retains the desired signal while suppressing

all unwanted noise and interference. A matched filter is one that is matched to the

range and velocity of a target to maximize the SNR and improve the probability of

detection [31]. The filter is considered matched because it is optimally tailored to

the specific receive signal it is filtering. Unfortunately, the range and velocity of the

target are seldom known a priori, so a bank of filters matched to all possible ranges

and velocities must be used to find the right match. The output of the filter, matched

to the narrowband return signal in both range and Doppler, is defined as [13]

y(�, fd) =

∫ T

t=0

sR(t)s∗(t− �)e−j2�fdtdt, (2.15)

and is often referred to as the range-Doppler correlation function. The wideband

range-Doppler correlation function is given by

y(�ref , �ref) =

∫ T

t=0

sR(t)s∗(�ref (t− �ref))dt, (2.16)

where �ref is the reference delay used to estimate the range between the radar and

the target and �ref is the reference time-scale used to estimate the relative motion

between the radar and the target.

2.4.3 Ambiguity Function.

Ambiguity functions are the mathematical tool used by radar designers to eval-

uate a waveform’s range and velocity resolutions simultaneously. These functions

characterize the response of the matched filter by describing the behavior of the

radar correlation over time for all range and velocity values [7]. In other words, the

ambiguity function is used to examine the ambiguities, or uncertainties, of the sys-

tem in range and velocity. The ambiguity function is defined as the magnitude of the

21

range-Doppler correlation function [16] of (2.15), and is expressed in its narrowband

form as

�(�, fd) = ∣y(�, fd)∣ =
∣∣∣∣∫ T

t=0

sR(t)s∗(t− �)ej2�fdtdt

∣∣∣∣ , (2.17)

where sR(t) was previously defined in (2.12). The generalized wideband ambiguity

function is similarly defined as [5]

�(�ref , �ref) =

∣∣∣∣∫ T

t=0

sR(t)s∗(�ref (t− �ref))dt

∣∣∣∣ . (2.18)

However, following Axelsson’s notation in [5], a change of variables is required. Setting

u = �ref t− �ref and thus t = (u+ �ref)/�ref , the integral in (2.18) becomes

∫
s(�t− �)s∗(�ref (t− �ref))dt =

∫
s

(
�

�ref
(u+ �ref)− �

)
s∗(u)dt. (2.19)

Setting � = �/�ref and Δ� = �−��ref , the generalized wideband ambiguity function

can be represented as

�(�,Δ�) =

∣∣∣∣∫ T

t=0

s(�t−Δ�)s∗(t)dt

∣∣∣∣ . (2.20)

The formula in (2.17) is often referred to as the Woodward ambiguity function

because of Woodward’s research in comparing range and Doppler performance of a

number of waveforms [41]. Often the ambiguity function, �(�, fd), is represented

graphically to view the performance and associated trade-offs of the system in both

range and Doppler [27]. Figure 2.6 shows the ideal thumbtack ambiguity response

that results from the random, aperiodic noise waveform.

The random noise radar ambiguity function has been studied in great detail. In

1966, Rihaczek [32] extended the wideband ambiguity function to bandwidths and

22

ranges that were not presented by Woodward. Rihaczek found that the relative radial

velocity, v, of a target did not simply result in a time dilation of the signal but also

in an amplitude change by a factor of 1 + v/f0, where f0 is the mean frequency of the

wideband signal. This amplitude change is small at practical velocities and is often

ignored. For the purposes of this research effort, the velocities are sufficiently small

and the resulting amplitude change will be ignored.

Axelsson [5], along with Dawood and Narayanan [7, 8] have provided much of

the recent research in UWB random noise radar ambiguity functions. Their work in

generalizing the ambiguity functions for UWB random noise waveforms has provided

the building blocks for determining the AFIT RNR ambiguity function that will be

discussed in Section 2.5.1.

2.4.4 Resolution.

The ambiguity function of (2.17) can be used to examine the limiting relationships

between the measurement window, T , velocity, v, and range resolution, ΔR, defined

in (2.8) [4]. A velocity ambiguity results if the time a moving target takes to pass

through a range resolution cell is more than the integration time. This means ΔR/v =

c/(2Bv) must be greater than T to avoid velocity ambiguity. The signal length, N ,

is shown in (2.13) to equal 2BT resulting in an upper limit on N defined as [4]

N = 2BT <
c

v
. (2.21)

From (2.21), it can be seen that the signal length must be shorter than the ratio of

the speed of light to the velocity of the target. As target velocity increases, the signal

length upper bound is shortened.

23

2.5 AFIT Random Noise Radar

The AFIT RNR, also known as the AFIT Noise Network (NoNET) when more

than one RNR is networked, is designed to produce highly resolved imagery of a target

scene while maintaining the LPI characteristics inherent in UWB noise radars [27]. It

can be configured in a monostatic or multistatic mode as well as a netted monostatic

mode that simply shares target information between multiple monostatic nodes.

In order to keep the design simple and configurable, the AFIT RNR consists of

a radio frequency (RF) front end, and a digital receiver known as the direct conver-

sion receiver (DCR). The ADC samples the RF transmit and receive signals without

mixing to baseband, thus providing a direct conversion of the RF signals for correla-

tion processing. A block diagram of the AFIT RNR can be seen in Figure 2.8. The

RF front end consists of a thermal noise generator, a transmit and receive antenna,

two band pass filters (BPF) and two low noise amplifiers (LNAs). Its thermal noise

generator produces a transmit waveform subsequently limited to a bandwidth of ap-

proximately 400 MHz with a high frequency of 800 MHz. The voltage signal has a

Gaussian amplitude distribution where the power spectral density is nearly uniform

across the bandwidth at approximately -85 dBm/Hz. Both the transmit and receive

channels use log-periodic antennas (LPAs) that are not ideal and introduce a nonuni-

form frequency response. The receive signal is filtered and amplified using the LNAs

before it is sent to the ADC.

The DCR begins with two-channel ADC that samples the transmit and receive

channels at 1.5 Gsamp/s each. The digital signals are then correlated using a number

of MATLAB® subroutines that have been developed for each of the AFIT RNR

configurations.

In addition to the hardware system, a model was developed in Simulink to simulate

the entire radar from end to end [30]. The model emulates the radar system, allowing

24

Figure 2.8. The AFIT NoNET consists of a RF front end and a direct conversion
receiver.

flexibility to digitally modify components in the radar and examine the effects the

modifications have on radar performance.

2.5.1 Simultaneous Range and Velocity Processing.

The most common approach to velocity estimation in noise radar literature is

based on Narayanan’s heterodyne receiver and classical Doppler processing [25]. There

are two basic components required to implement this classical Doppler processing.

First, the phase information of the signal must be known, and second, the a narrow-

band noise model must be assumed.

Because Doppler radars estimate target velocity by comparing the frequencies of

the transmit and receive signal, phase coherence must be maintained. To introduce

this phase coherency, a local oscillator (LO) is used for mixing and frequency conver-

sion of both the transmit and receive signal. The resulting in-phase (I) and quadrature

(Q) channels provide the phase coherence required to measure the Doppler shift of

the receive signal.

25

Additionally, classical Doppler processing requires a narrowband assumption. Trans-

lating Doppler frequency shift, fd, to relative radial target velocity, v, is done us-

ing (2.2). In an UWB radar, the transmit signal is not defined by a single frequency

(with a single wavelength �), but rather by a range of frequencies from fl to fℎ as

defined by the 3 dB bandwidth. So, unless all frequencies within the signal experience

the same Doppler shift, there will be an error when using (2.2) to estimate target

velocity. One method to mitigate such errors is to average the transmit waveform

with center frequency f0 over long intervals which results in the Doppler equation [25]

fd0 =
2v

�0
cos , (2.22)

where fd0 and �0 correspond to the mean Doppler frequency and mean transmit

wavelength, respectively.

Because the AFIT RNR uses a digital receiver in place of Narayanan’s hetero-

dyne receiver design, and because the AFIT RNR transmits over a large fractional

bandwidth with no carrier frequency, classical Doppler analysis results in untenable

errors in the AFIT RNR [2]. Lievsay and Akers [19], however, proposed a method

to extract velocity information using the AFIT RNR’s phase-incoherent digital cor-

relation. The transmitted noise waveform is sampled at fs = 2fℎ, where fℎ is the

waveform’s maximum frequency. Target velocity causes each sample of the receive

signal to shift in time by Δt relative to the received signal from a stationary target.

Figure 2.9 illustrates how the relative radial velocity of a target, v, causes the received

measurement window, Trx to differ from the transmit measurement window, Ttx by

Trx = Ttx/�, (2.23)

where � is the time scale of the receive signal as defined in (2.11).

26

Figure 2.9. Illustration of the time domain velocity estimation technique implemented
in the AFIT RNR.

The overall difference between the duration of the receive signal and the duration

of the transmit signal due to the target velocity, v, is given by ΔT = Trx−Ttx as can

be seen in Figure 2.10. The ΔT of the overall measurement window results from the

relative time shift at each sample, expressed as

Δt =
2v

(c− v)fs
. (2.24)

From this relationship, a target’s radial velocity can be derived by measuring the time

shift at each sample over the length of the measurement window. It is important

to note that this method assumes the target’s radial velocity is constant over the

measurement window Ttx.

Lievsay [18] created a bank of reference signals, analogous to Doppler filter banks,

27

Figure 2.10. Ingressing radial velocity shortens the measurement window by ΔT .

in the form of

sref [k] = s[k − (k − 1)Δt], (2.25)

where each reference signal in the bank has a Δt that corresponded to a set reference

velocity. Each reference signal is then cross-correlated with the measured signal, and

based on a single-target assumption, the signal with the highest correlation corre-

sponded to the estimated velocity of the target. The reference signal bank must be

chosen carefully. If the velocity increments are too large, the radar may miss the target

due to the thumbtack ambiguity response. However, each velocity increment requires

processing time and memory. Increments that are too small would require more ref-

erence signals and could quickly overwhelm memory, resulting in prohibitively long

processing times. Unfortunately, the bank of reference signals cannot be generated a

28

priori because the transmitted signal is random for each measurement window.

The length of a transmit and receive signal is given by N = ⌈fs ⋅ T ⌉, where ⌈⋅⌉

represents the integer ceiling of the computed value. Velocity resolution is directly

tied to the highest frequency of the signal, fℎ and the measurement window, T .

This relationship can be seen by analyzing the wideband ambiguity function, defined

by Axelsson [5], and applied to the AFIT RNR by Lievsay [18]. The AFIT RNR

wideband ambiguity function is an expansion of (2.18) given by

∣⟨�(Δ�, �, t)⟩∣ =

∣∣∣∣∫ t+T

t

sinc [�B((� − 1)� −Δ�)] cos(j2�fc(� − 1)�)d�

∣∣∣∣, (2.26)

where B is the signal bandwidth limited at the upper end by fℎ, � is the relative time

scale given by � = �/�r, and Δ� = � − ��r. From (2.26), it can be seen that the

measurement time, T , and the bandwidth, B, define the velocity resolution within the

ambiguity function. The ambiguity function can also be represented graphically to

view velocity and range performance tradeoffs. An example of an ambiguity function

plot can be seen in Figure 2.6.

As illustrated in Figure 2.11, velocity resolution is improved as fℎ or T increases.

However, the computational requirements of the DCR increase as well. For a sampling

frequency of 1.25 GHz and a measurement window of 160 ms, the signal to be stored

in a processor’s random access memory (RAM) has 200 million samples, making

the amount of available memory a limiting factor. Due to processing limitations,

Lievsay limited the signal length to 200 million samples. An increase in measurement

time would result in a decrease to the sampling frequency to maintain N = ⌈fs ⋅T ⌉ =

200 million. At a sample rate of 1.25 Gsamp/s, the measurement window that resulted

in a signal length of 200 million was set to 160 ms.

In addition to limiting the length of the signal for his experiment, Lievsay [18]

limited the span of velocities to be measured and the velocity resolution. He measured

29

(a)

(b)

Figure 2.11. (a) As the measurement window, T , grows, the velocity resolution im-
proves. Similarly, (b) as the highest signal frequency grows, the velocity resolution
improves. (From [18])

velocities spanning only -2 to -14 m/s, with increments of 0.5 m/s. This velocity span

corresponded to 25 reference signals in the form of (2.25), each with a different Δt.

Each reference signal was correlated with the measured receive signal and plotted

in a 2D range-velocity plot. With these limitations, the simultaneous range-velocity

processing using actual measured data for an inbound target at 10 meters traveling

at 5 m/s was 42 minutes, which is significantly greater than the measurement window

30

of 160 ms.

The RAM required using Lievsay’s [18] velocity estimation technique was 32 GB,

making parallel processing using AFIT’s equipment impossible. However, if the mem-

ory requirement is sufficiently reduced, the processing can be done in parallel using

multiple CPUs or even using an FPGA or GPU. To reduce the memory requirement,

a single-bit (or binary) ADC can be used in place of the existing eight-bit ADC.

Axelsson [3] has shown that, for a single target with a high SNR, a binary ADC will

perform as well as a high resolution ADC for range and velocity processing.

2.5.2 AFIT RNR Signal-to-Noise Ratio.

The noise radar RRE varies from the single pulse (or single sample) RRE of the

pulse radar given in (2.5). The maximum range is affected by the integration gain

of the correlation receiver. The integration gain, BT , is also known as the time-

bandwidth product and, when applied to the RRE, leads to a the noise radar RRE

given by

Rmax = 4

√
PtGtGr�2�T

(4�)3kT0FLs(min SNR)
. (2.27)

Furthermore, including the integration gain into the noise radar SNR leads to the

equation

SNRRNR =
Pr
Pn

=
PtGtGr�

2�T

(4�)3R4kT0FLs
. (2.28)

Integration time results in an additional design factor for noise radar engineers. Not

only will increasing power and antenna gain improve the maximum detectable range,

but range will also be improved by increasing integration time.

31

2.5.3 Pre-Processing SNR.

As seen in (2.28), Pt, Gt, Gr, �, �, T , R, B, F , and Ls are the only variable

parameters affecting the SNR of the radar. Typically, the target RCS and range are

out of the hands of the radar engineer and the loss figure is specific to the application

and environment, narrowing the list of modifiable parameters. In the case of the

AFIT RNR, the high and low frequencies are set, holding � and B constant as well.

Only Pt, Gt, Gr, T , and F are left available for the radar engineer to impact SNR. Of

these parameters, F is dependent on the components in the receive path, and until

those components are miniaturized in the future, the noise figure is assumed constant

over the signal bandwidth. Similarly, because of the flat power spectral density of the

noise source as discussed in Section 3.2.1, the transmit power, Pt, can be assumed to

be constant over the signal bandwidth as well.

Without significant hardware changes to the AFIT RNR, the transmit and receive

antenna gain and the integration time are the only parameters that can impact the

SNR of the system. The current antennas do not provide a constant gain across

the signal bandwidth. The frequency dependence of the antenna gain can have a

significant impact on the SNR. Ludwig [20] is designing a new antenna for the AFIT

RNR that will have a smaller form factor and likely have a more constant gain across

the signal bandwidth.

Integration time, as seen in (2.28), is directly proportional to the SNR of the AFIT

RNR. Although the parameter is modifiable, the measurement window is currently

limited to 1 �s due to the hardware constraints of the ADC. Extending the measure-

ment window past 1 �s will require a new digitizer board. Although modifiable to

improve SNR, there is no frequency dependence of the integration time on the overall

SNR of the system.

Frequency dependence is further introduced into the AFIT RNR by the LNAs.

32

The LNA frequency response is illustrated in Figure 2.12. Approximately 2 dB of

gain separates the lower end of the band of interest from the upper end. Two LNAs

are cascaded in the AFIT RNR, leading to a change of roughly 4 dB within the

passband. It is expected that the system noise is white Gaussian, thus not a function

of frequency. The noise, however, is amplified in the LNAs along with the receive

signal resulting in a frequency dependent noise signal.

Figure 2.12. Each LNA in the AFIT RNR results in a 2 dB disparity across the
passband (400-800 MHz).

2.5.4 Post-Processing SNR.

The DCR that has been implemented in the AFIT RNR has a significant impact

on the SNR of the system. To begin, the ADC introduces an error between the analog

input and the digital output known as quantization noise. Second, the correlation

process results in a peak response as well as a correlation floor also known as the

sidelobe level.

33

The eight-bit ADC used in the AFIT RNR has been studied in great detail by

Nelms [27], who concluded that the quantization noise spectra of the ADC is nearly

uniform, causing no significant cross-correlations that can lead to erroneous target

estimations. The quantization noise of the ADC does, however, add to the noise figure

of the receiver, which reduces the SNR and can negatively impact the probability of

false alarm.

In [39], Walden states that the SNR (in dB) of an ideal ADC can be defined as

SNR = 6.02Nb + 1.76, (2.29)

where Nb is the number of bits in the ADC. For a given input signal, the noise power

resulting from an eight-bit ADC is approximately 50 dB less than the signal power.

Conversely, for the binary ADC discussed in Section 3.3.1, the noise power resulting

from the ADC is only 7.78 dB less than the signal power.

Axelsson discusses the correlation processing in the range dimension of a wideband

noise signal in [2, 3]. Following his notation, range correlation in its simplest form,

is a comparison of the noise signal s[k] with a time-delayed version s[k − m] and

represented as

r[m] =
N−1∑
k=0

s[k]s[k −m], (2.30)

where N is the length of the signal defined by the integration time. The peak of the

correlation function occurs when perfectly matched in time (m = 0) and its amplitude

is defined as

r[0] = N < s2[k] >= N�2
r , (2.31)

34

where �2
r is the variance of the received signal and < ⋅ > represents the signal mean.

The squared correlation floor, also known as the sidelobe variance �2
s , is found when

m ∕= 0 and given by

�2
s =

N−1∑
k=0

< s2[k] >< s2[k −m] >= N�4
r . (2.32)

Combining (2.31) and (2.32), the ratio between the squared correlation peak resulting

from a matched range and the sidelobe variance resulting from mismatched ranges

can then be defined as

r2[0]

�2
s

=
N2�4

r

N�4
r

= N. (2.33)

This equation is defined as the peak-to-average sidelobe ratio and can also be consid-

ered the post-processing SNR.

The pre-processing SNR plays a role in the correlation peak-to-average sidelobe

ratio. To see the role of the pre-processing SNR (�2
r/�

2
n), additive noise must be in-

cluded in the derivation above. The correlation function with noise can be represented

as

r[m] =
N−1∑
k=0

(s[k]s[k −m] + s[k]w[k]), (2.34)

where w[k] represents the additive Gaussian noise with variance, �2
n, used to determine

the SNR of the pre-processed signal. The presence of noise does not change the

correlation peak amplitude but does increase the sidelobe variance to

�2
s = N�4

r +N�2
r�

2
n. (2.35)

35

Continuing, the peak-to-average sidelobe ratio with additive noise becomes

r2[0]

�2
s

=
N2�4

r

N�4
r +N�2

r�
2
n

=
N

1 + SNR−1 . (2.36)

However, there are a number of factors that complicate this analysis. First the

signals that are correlated are not exact replicas. The target environment, noise,

hardware components, and other interference cause changes to the receive signal.

These changes effect the pre-processing SNR of the signal and are part of the cross-

correlation processing.

2.6 Chapter Conclusion

The AFIT RNR is a low-power, electromagnetically compatible, and flexible sys-

tem originally designed for high resolution radar imagery. It also has a number of

characteristics that make it ideal as an autonomous collision avoidance sensor. This

chapter presented the basic principles of noise radar technology. The next chapter

will tie these principles into the research effort to demonstrate the AFIT RNR’s si-

multaneous range and velocity processing and the software model used for the SNR

analysis.

36

III. System Description and Methodology

3.1 Chapter Overview

To investigate the AFIT RNR’s ability to simultaneously process range and ve-

locity information in minimal time, a logical and procedural effort was established.

Those procedures are presented in this chapter along with an overview of the hardware

and software used in the simultaneous processing. Additionally, the methodologies

used to build the AFIT RNR software model are presented, allowing for a comparison

of the theoretical capabilities of the RNR with measured results, and providing the

foundation for a thorough analysis of the noise radar’s SNR.

3.2 System/Equipment Description

The AFIT RNR was first constructed by Schmitt [33] and was demonstrated in

near-monostatic and networked configurations. The bistatic/near-monostatic config-

uration, broken into its functional blocks, can be seen in Figure 3.1, and is the focus

of this research effort.

3.2.1 Transmitter.

To generate a random noise transmit signal, the AFIT RNR uses a thermal noise

generator developed by Noise Comm®. This white Gaussian noise source provides

a flat response at -82 dBm/Hz up to 1.6 GHz. The source is then filtered using a

low-pass filter (LPF) and a high-pass filter (HPF) to generate the band-limited signal

from 400 to 800 MHz. After filtering, the noise signal is split to the transmit antenna

as well as to the direct conversion receiver (DCR), where it is used as a reference

signal for correlation processing. The transmit and receive antennas are wideband

37

Figure 3.1. This figure illustrates the functional building blocks of the AFIT RNR in
its bistatic/near monostatic configuration.

log-periodic antennas (LPAs) that offer frequency dependent gain in the ballpark of

6 dB. The transmit path of the AFIT RNR can be seen in Figure 3.2.

Figure 3.2. This figure highlights each component in the AFIT RNR transmit path.

38

3.2.2 Receiver Front End.

After the transmit signal interacts with the environment, the return echo at the

receive antenna experiences a similar gain as experienced by the transmit signal at the

transmit antenna. The signal is then passed through a LPF and HPF combination,

identical to the transmit path filters, before being amplified by two, 20-dB low noise

amplifiers (LNAs). The LNAs are used to bring the receive signal amplitude within

the dynamic range of the ADC. The receive path of the AFIT RNR can be seen in

Figure 3.3, and a detailed description of each hardware component in the AFIT RNR

can be found in [33].

Figure 3.3. This figure highlights each component in the AFIT RNR receiver front end
(prior to ADC).

3.2.3 Direct Conversion Receiver.

The DCR performs the transmit and receive signal analog-to-digital conversion

as well as the correlation processing required for range and velocity estimation using

the theory described in Sections 2.4 and 2.5. The ADC is developed by Acquisition

Logic® and has a bit-depth of eight bits. The single-channel sampling rate of the ADC

is 3 Gsamp/s, while the two-channel sampling rate is 1.5 Gsamp/s with a maximum

39

acquisition time of 1 �s. Although limited to the two-channel 1.5 Gsamp/s sampling

rate, the ADC can interpolate up to three additional samples per measured sample

to bring the effective two-channel sampling rate to 6 Gsamp/s in the standard AFIT

RNR configuration.

The ADC is connected to a Dell Inspiron 640m laptop through a Peripheral Com-

ponent Interconnect Express (PCIe) card and uses direct memory access to place

the digital signals directly into the MATLAB® workspace. With the transmit (or

reference) and receive signals in digital format, the correlation processing takes place

using a MATLAB® routine developed by Schmitt [33] but further refined by Nelms

and Priestly [27] and [30]. This algorithm uses a 1 �s measurement window and per-

forms only range correlation. The AFIT RNR’s ability to measure range precisely has

been documented in [27] and [30]. Velocity estimation in the standard AFIT RNR

application has been based on this range estimation capability and exploits the well

known equation

velocity(v) =
distance(d)

time(t)
. (3.1)

Given two measurement windows separated by time t, and assuming a constant target

velocity, the relative radial velocity of the target, v, can easily be calculated. This

velocity estimation technique, however, requires multiple measurements to determine

target velocity. To perform simultaneous range and velocity processing within the

DCR a new algorithm was developed by Lievsay [18]. As discussed in Section 2.5.1,

the two-dimensional (2D) processing approach worked, but the processing times and

hardware required were prohibitive for any practical application.

40

3.3 2D Processing Performance

With the initial work accomplished by Lievsay [18], a need to develop an efficient

2D processing algorithm was uncovered. The 42-minute processing time and 32 GB

RAM requirement made the 2D processing impractical for AFIT RNR applications.

This section describes the two-fold approach used to bring the 2D processing appli-

cation nearer to practical implementation. The first approach attempts to reduce

the memory required for 2D processing by simulating a binary ADC in place of the

eight-bit ADC. The second approach involves segmenting the Fast Fourier Transforms

(FFTs) used for correlation in order to parallelize the correlation processing.

3.3.1 Binary ADC.

As discussed in [18], Lievsay implemented the 2D processing algorithm in a con-

trolled scene with a single inbound target at a range of 10 m and a velocity of -5

m/s. The RAM required using this velocity estimation technique was 32 GB, mak-

ing parallel processing using AFIT’s equipment impossible. However, if the memory

requirement is sufficiently reduced, the processing can be done in parallel using mul-

tiple central processing units (CPUs) or even using a field-programmable gate array

(FPGA) or graphics processing unit (GPU). To reduce the memory requirement, a

single-bit (or binary) ADC can be used in place of the existing eight-bit ADC.

Axelsson [3] has shown that, for a single target with a high pre-processing SNR,

a binary ADC will perform as well as a high resolution ADC for range and velocity

processing. Further, he has shown that multiple targets can lead to reduced sidelobe

suppression in a binary ADC compared to an ideal ADC. To improve sidelobe sup-

pression, a secondary noise signal can be added to the received signal before the ADC.

The added noise signal can reduce the sidelobe amplitudes to those of an eight-bit

ADC at the expense of the pre-processing SNR. For the purposes of this exercise,

41

only a single target is present, and the post-processing SNR is expected to remain

the same for the 2D correlation using only the signs of the received signal vice the

full eight-bit ADC signal values.

In an effort to compare the results of the binary signal to the results measured

by Lievsay [18], Lievsay’s measured data for a single inbound target with known

velocity was used for the MATLAB® simulation outlined here. Because of the long

measurement windows required for adequate velocity resolution (≈ 150 ms), the ADC

used in the DCR, which has an acquisition limit of 1�s, could not be used. Instead,

the original data was collected by Lievsay using the AFIT RNR with a Tektronix®

Digital Phosphor Oscilloscope (DPO) 7254 as the eight-bit ADC. The dataset that

is used for the test is of a target at 10 m from the monostatic radar moving directly

toward the RNR at 5 m/s. The measurement window was 160 ms and sampled at

fs = 1.25 Gsamp/s.

The test is conducted in an eight-step process using a single computer with the

specifications given in Table 3.1. In each step, the processing time and the peak

instantaneous memory usage are recorded, and the results are compared to those

attained using Lievsay’s method. The test procedure is:

1. Replicate Lievsay’s results using his data and correlation algorithm.

2. Optimize Lievsay’s correlation algorithm without changing its functionality.

3. Convert transmit and receive signal from double to single precision.

4. Convert transmit and receive signal from single precision to sign only (+1 or

-1) to simulate the output of a binary ADC.

5. Replace interp1 function to reduce processing time and memory.

6. Use multiple (four or more) processors on single computer.

42

7. Change the number of points in the FFT used for signal correlation to a power

of two in order to speed up the fft function.

8. Evaluate the possibility of using a GPU to speed up processing time.

3.3.2 FFT Segmentation.

As discussed in Section 3.2 and illustrated in Figure 3.1, the transmit signal, s(t),

is split and passed into the DCR, where a bank of reference signals is generated based

on the transmit signal and set of pre-defined reference velocities. Based on (2.24),

the selected reference velocity shifts each of the N samples of the transmit signal by

Δt to give a reference signal in the form of (2.25).

The receive signal is then correlated with each of the reference signals. The cross

correlation function, r(�), is defined as [13]

r(�) =

∫ T

t=0

sR(t)sref (t− �)dt, (3.2)

where sR(t) is the receive signal and � = 2R/c represents the range to the target in

terms of the time delay. However, in the DCR, the correlation is performed digitally

in the form of

r[m] =
N−1∑
k=0

sR[k]sref [k −m], (3.3)

where m = fs� corresponds to the number of samples for delay � . To implement this

cross correlation function in an efficient manner, the FFT is used.

Correlation is similar to convolution, and that similarity can be exploited to take

advantage of the FFT efficiencies. Convolution in the time domain is equivalent to

multiplication in the frequency domain. The difference between convolution and cor-

relation is simply that in convolution, the reference signal is reversed in the time

43

Table 3.1. Processing Computer Specifications

Make Hewlett-Packard
Model Z800 Workstation
Operation System Windows 7 Pro
Processor Make Intel
Processor Model Xeon X5667
Number of Processors 8
Processor Speed 3.07 GHz
64-bit Technology Yes
Installed Memory 48 GB

domain, which is not the case in correlation. That reversal is equivalent to a conju-

gation in the frequency domain, leading to the equation for correlation

r[m] =
1

N
ℱ−1 [ℱ{sR[k]}ℱ{sref [k]}∗] , (3.4)

where ℱ represents the Fourier transform, ℱ−1 represents the inverse Fourier trans-

form, and * represents conjugation.

Although the FFT is efficient, the lengthy signals required for sufficient velocity

resolution, and hence the lengthy FFTs, are too long to allow for parallel implemen-

tation in a GPU. The signals must be broken into small segments, thus reducing the

FFT sizes to allow for parallelization over hundreds of processors.

Meller published a method in [24] to segment lengthy FFTs in a noise radar

correlator. More commonly known as the overlap-save method [28], the FFTs are

broken into overlapping segments of length 2M , where M is equivalent to the number

of samples in the time delay corresponding to the range extent Rmax. The receive

signal segments have M samples from sR[k] and are padded with M zeros to have a

segment length of 2M samples. The reference signal segments, on the other hand,

are a concatenation of M samples from the “previous” segment and M samples from

the “current” segment, thus overlapping the FFT segments.

44

Once the signals have been segmented, the FFTs of the receive signal and reference

signal segments are computed. The conjugated reference signal FFT segment is then

multiplied with the receive signal FFT segment, and the inverse FFT (IFFT) of

the result is computed. The segmented IFFTs are then accumulated (the vectors

are added), resulting in the cross correlation of the reference and receive signal. A

comparison of the the traditional cross correlation implementation with the segmented

method proposed by Meller [24] can be seen in Figure 3.4.

(a)

(b)

Figure 3.4. Comparison of (a) the traditional cross correlation implementation and (b)
the segmented cross correlation method proposed by Meller [24].

The benefit of this FFT segmentation method is its potential for parallelization.

The cross-correlation of each segment can be computed individually and in parallel

before accumulation. Instead of a single cross correlation that has FFTs of length 200

million, there can be many (thousands) of cross correlation operations that take the

place of the single operation. These fast operations can be implemented on a GPU

or FPGA and distributed to hundreds of processing cores operating in parallel, thus

significantly reducing the overall processing time.

Two computers, equipped with NVIDIA® GPUs, were used to process the col-

45

lected data. The specifications for each of the computers along with the GPUs are

presented in Table 3.2.

The test procedure for this element of the test effort is as follows:

1. Update the algorithm to include FFT segmentation. Determine processing time

on both multi-core PCs without GPU computing.

2. Modify the algorithm for GPU computing using MATLAB®’s GPU interface.

Determine processing time on both GPU equipped multi-core PCs.

3. Modify the algorithm for GPU computing using Jacket®’s GPU interface. De-

termine processing time on both GPU equipped multi-core PCs.

MATLAB® has developed a GPU interface as part of the parallel computing tool-

box. A number of GPU specific commands have been created to pass CPU variables

to the GPU to perform computations on the GPU and then gather the results back

to the CPU.

Another company, AccelerEyes®, has developed a product called Jacket® that

claims to be better than the parallel computing toolbox in MATLAB®. Jacket®

allows MATLAB® users to interface with the GPU without getting into the low-

level programming details. Jacket® supports many MATLAB® functions to make

modifying existing algorithms for GPU computing fairly seamless. Both Jacket® and

MATLAB®’s parallel computing toolbox will be used to find the best solution to

simultaneous range and velocity processing in the AFIT RNR.

3.4 Software Model

To build credibility into the SNR analysis, a robust model of the AFIT RNR is

required to simulate the expected behavior of the system. Priestly created a basic

model in Simulink® [30] that provides the foundation for the robust model required

46

Table 3.2. Parallel Processing Hardware

Computer 1 Computer 2

Make Dell HP
Model Precision T7500 Z8000 Workstation
Operating System Windows 7 Pro Windows 7 Pro
Processor Make Intel Intel
Processor Model Xeon W5590 Xeon X5667
Number of Processing Cores 4 8
Processor Speed 3.33 GHz 3.07 GHz
Installed Memory 48 GB 48 GB
GPU Make NVIDIA NVIDIA
GPU Model Tesla 1060 Tesla C2070
GPU Processing Cores 240 448
GPU Shared Memory 4 GB 6 GB

for SNR analysis. This model along with the significant updates required are discussed

in this section.

3.4.1 Previous Work.

Each hardware component in the AFIT RNR can be modeled in the Simulink®

environment using the specifications given in the component data sheets and sum-

marized by Schmitt in [33]. Some components are easier than others to model. For

instance, the LPFs and HPFs can be modeled fairly easily and accurately by modify-

ing the parameters in the respective Simulink® blocks to match the component data

sheets. Similarly, the LNAs and the noise source can be modeled accurately without

too much trouble. The log-periodic antennas and the target environment, however,

are more difficult to model. Priestly [30] laid the framework for the entire model, but

did not have time in his research effort to properly characterize each element in the

model, specifically in the antenna and target environment subsystems.

47

3.4.2 Necessary Changes.

The first significant change to the model is the transmit and receive antenna

subsystems. The LPAs do not provide a consistent gain across the entire bandwidth

of the transmit signal; thus a standard 6 dB gain is not adequate. Ludwig [20]

measured the reflection curve (S11) of a representative LPA and the results can be

seen in Figure 3.5. Although this curve is not a measure of antenna gain, it is clear

that the losses due to reflection vary widely with frequency. Assuming the other losses

in the antenna are minimal and whatever is not reflected in the antenna is transmitted,

a better model of antenna gain would be frequency dependent and proportional to

the inverse of the reflection curve, as can be seen in Figure 3.6.

Figure 3.5. Measured reflection curve (S11) of LPA used in the AFIT RNR.

The second change to the model is a subsystem that simulates system noise.

Although there are many sources of noise, it is often assumed that the internal noise of

the receiver is the dominant contributor to the system noise, and all other sources are

48

Figure 3.6. The inverse of the S11 curve is assumed to be proportional to the gain of
the LPA.

assumed to be zero. Internal noise is considered to be white Gaussian, thermal noise

and is proportional to the bandwidth, B, of the receiver and given by equation (2.4).

Since system noise is added to the receive signal and cannot be separated from the

signal, any amplifications to the signal throughout the receiver also amplify the noise.

Finally, the target environment subsystem must accurately reflect the expected

behavior of the AFIT RNR. This subsystem must account for the spreading loss of

the signal due to the antenna, the radar cross section of the target, the range from

the radar to the target, and the measurement window (integration time) of the RNR.

The environment subsystem is much more difficult to model than the AFIT RNR

system components. It is even more difficult to validate. The simplified environment

subsystem models the radar return only from a single target of a specific geometry at

a specific distance from the radar. The model does not account for external electro-

magnetic interference, antenna polarization and interference, and multi-bounce echoes

49

from surrounding walls, floors, and ceilings. Those external influences are beyond the

scope of this effort and not included in the model, but are expected to cause the most

significant discrepancies between the measured and simulated data.

3.5 Performance Experiment

In order to determine the accuracy of the Simulink® model, a comparison of

the model results to measured data is warranted. This section discusses the test

equipment and setup, as well as the procedures developed to gather relevant data.

3.5.1 Equipment and Setup.

To collect the data used to compare to the model, a single node of the AFIT RNR

is used in its near-monostatic configuration. Along with the RNR node, a Tektronix

DPO 7354 Digital Phosphor Oscilloscope is used to gather voltage and spectrum

information. A single, 4 ft2 flat-plate target is placed at various distances from the

radar. The radar cross section (RCS) for this specific target can be easily modeled

in the RNR Simulink® model. The AFIT Compact Electromagnetic RCS Range

(ACER) was chosen as the test location because of its size, and because it is designed

to minimize external electromagnetic interference. Unfortunately, the ACER range

is not optimized for the long wavelengths of the UHF band that makes up the AFIT

RNR transmit signal. Multi-bounce echoes and returns from the walls, ceilings, and

floors are expected. The RNR along with the collection equipment and setup can be

seen in Figure 3.7. A view of the flat-plate target at a distance of 8 m from the RNR

can be seen in Figure 3.8.

50

Figure 3.7. A single node of the AFIT RNR is shown along with the collection equip-
ment used in the performance experiment.

Figure 3.8. The 2 ft2 flat-plate target located at a distance of 8 m from the RNR is
shown.

51

3.5.2 Experiment Procedures.

Comparing a single measured result to the model will not provide much confidence

in the robustness of the model. To truly determine the accuracy of the model, multiple

measurements in multiple configurations must be compared to the model. However,

due to time, equipment, and location limitations, the number of radar and target

configurations is limited. Therefore, receive path measurements are taken for a single

target at 6 and 8 m using HH and VV antenna polarization, and using two different

RNRs. The target chosen is a flat plat with a hip-pocket radar cross section (�)

equation given by [1]

� =
4�w2ℎ2

�2
, (3.5)

where w and ℎ represent the width and height of the flat plate in meters. The flat

plate chosen for this experiment is a square reflective plate with 2 ft sides.

The measurements are taken at five test points which can be seen in Figure 3.9.

The first three test points are on the transmit path, where measurements are taken

for both RNR units at the output of the noise source (TP1), the output of the filters

(TP2), and the output of the splitter (TP3). The last two test points occur on the

receive path right after the receive antenna (TP4), as well as right before the ADC

(TP5) to determine the impact the receiver has on the received signal. To ensure

consistency in the noise signal measurements, 100 realizations of the signal at each

test point will be averaged. The planned receive path measurements can be seen in

Table 3.3.

Not only are transmit and receive signal measurements collected during the ex-

periment, but the RNR’s correlation results are also recorded for targets at 6 and

8 meters, and with the antennas in HH and VV polarization. Similarly, correlation

52

Figure 3.9. The five measurement test points are highlighted on a picture of the AFIT
RNR hardware box.

Table 3.3. Pre-Processing SNR Characterization Experimental Test Measurements for
1 �s measurement window on receive path.

Collection Measurement Target RNR Box
Number Location Range Polarization Number

101 Rx Antenna (TP4) 7 m HH 5
102 ADC (TP5) 7 m HH 5
103 Rx Antenna (TP4) 7 m HH 3
104 ADC (TP5) 7 m HH 3
105 Rx Antenna (TP4) 7 m VV 5
106 ADC (TP5) 7 m VV 5
107 Rx Antenna (TP4) 7 m VV 3
108 ADC (TP5) 7 m VV 3
109 Rx Antenna (TP4) 5 m HH 5
110 ADC (TP5) 5 m HH 5
111 Rx Antenna (TP4) 5 m HH 3
112 ADC (TP5) 5 m HH 3
113 Rx Antenna (TP4) 5 m VV 5
114 ADC (TP5) 5 m VV 5
115 Rx Antenna (TP4) 5 m VV 3
116 ADC (TP5) 5 m VV 3

results of the environment with no target present are recorded, and used for back-

ground subtraction. The peak-to-average sidelobe ratio is then determined based

on the correlation results after background subtraction. As stated in Section 2.5.4,

the peak-to-average sidelobe ratio can be considered the post-processing SNR, and is

53

expected to be approximately equal to the number of samples in the signal, N .

The measurements described above and in Table 3.3 are repeated using two EMCO

3106 UHF standard gain horns in place of the LPAs. These standard gain horns

are designed to provide fairly consistent gain in the UHF band, particularly in the

AFIT RNR frequencies of interest. Unlike the LPAs, the antenna gain as a function

of frequency has been measured and is known for these two horns. The frequency

response of the horns can be seen in Figure 3.10. With a known frequency response,

the standard gain horns provide an opportunity to verify the model’s accuracy by

eliminating an unknown variable introduced by the LPAs. The experimental setup

within the ACER test range using the standard gain horns can be seen in Figures 3.11

and 3.12.

Figure 3.10. The standard gain horn’s gain as a function of frequency is known, elimi-
nating an unknown variable in the Simulink® model.

54

Figure 3.11. Two UHF standard gain horns are used in place of the LPAs to eliminate
an unknown variable in the AFIT RNR model.

Figure 3.12. The 2 ft2 flat-plate target located at a distance of 6 m from the RNR with
two standard gain horns is shown.

55

3.6 Chapter Conclusion

This chapter detailed the methodology for improving the simultaneous range and

velocity processing in the AFIT RNR. It presented a logical approach to minimizing

the memory requirement and configuring the 2D processing algorithm for implemen-

tation on a GPU. Furthermore, this chapter presented the structure of the AFIT

RNR Simulink® model and the construct for collecting physical measurements of the

AFIT RNR to compare to the model. The results of the 2D processing optimization

effort and the model comparison are presented in the next chapter.

56

IV. Results

4.1 Chapter Overview

The results of the simulations and experiments discussed in the previous chap-

ter are presented here. Comparisons are made between the theoretical, simulated

and/or measured results, providing a comprehensive analysis of the primary research

objectives. The chapter begins a summary of the 2D processing experimental effort,

followed by a graphical comparison of the simulated and measured signals within the

AFIT RNR. Additionally, a numerical comparison of the calculated, simulated and

measured SNR results is presented.

4.2 2D Processing Results

Improvements to the AFIT RNR simultaneous range and velocity processing al-

gorithm were made in a systematic and logical progression. The first effort focused

on replacing the eight-bit ADC with a binary ADC. The second effort involved mod-

ifying the algorithm for parallelization on a GPU. This section presents the results of

these two efforts.

4.2.1 Binary ADC Results.

The results of the eight-step test discussed in Section 3.3.1 are summarized in

Table 4.1. The procedure began by recreating the successful results that Lievsay

published in [18]. The processing time was Tp = 42 minutes on the fastest computer

used by Lievsay. This test, however, used a newer computer and the processing was

only Tp = 37.5 minutes using his data and algorithm. After optimizing Lievsay’s

algorithm by eliminating superfluous variables and changing the transmit and receive

signal variables from double to single precision in MATLAB®, the processing time

57

improved to Tp = 15.5 minutes. As expected, no impact to the accuracy of the results

were found when using single precision.

To simulate the output of a binary ADC, only the sign of the transmit and receive

variables was used for the next step. As hypothesized, the results were consistent

with Lievsay’s [18]. Although the memory requirements and processing times were

improved to this point, the processing time was still prohibitively long, so further

optimization was required.

Table 4.1. Summary of binary ADC test results

Step Description Peak Memory (GB) Time (minutes) Consistent?

1 Lievsay’s results [18] 40 37.5 Yes
2 Minor mods 28 22.3 Yes
3 Single precision 21 15.5 Yes
4 Signs Only 21 15.5 Yes
5 Replaced interp1 15.5 9.35 Yes
6 Parallel 42 5.38 Yes
7 FFT points 35 4.7 Yes*
8 GPU feasibility – – –

* Slight decrease to velocity resolution

MATLAB®’s interp1 function was used by Lievsay [18] to generate a bank of

reference signals and was the most time consuming line in the code, necessitating

an alternative. There are many features built into the interp1 function that make

the function versatile for many applications, but also slow it’s processing speed. For

the purposes of this algorithm, a simple index shift to the transmitted signal based

on the target’s relative radial velocity is all that is needed to create the bank of

reference signals. To understand the index shifts required, consider the time signal in

Figure 4.1. The simulated transmit signal is plotted with a dotted line along with the

simulated receive signal in the dashed line. The receive signal measurement window

is shortened at the first sample index by Δt, at the second sample index by 2Δt and

so on. The received signal is compressed as a result of the target’s relative radial

58

velocity as detailed in (2.23); however, the received signal is still sampled at the same

sample time as the transmitted signal, Ts. The number of index shifts expected in

the receive signal is equal to

L =

⌈
N ∣Δt∣
Ts

⌉
, (4.1)

where L is the number of shifts, N is the number of samples in the signal, and ⌈⋅⌉

represents the ceiling, or rounding of a non-integer up to the next integer. For an

inbound target, the first ⌈Ts/(2∣Δt∣)⌉ samples of the reference signal will be mapped to

the same sample values as the transmitted signal. The next ⌊Ts/∣Δt∣ − Ts⌋ samples of

the reference signal, where ⌊⋅⌋ represents a round-down to the next integer, will instead

be mapped to the respective transmitted signal values plus one sample. Similarly, the

next ⌊Ts/∣Δt∣−Ts⌋ are mapped to the values corresponding to the same samples plus

two samples and so on. For a target with unknown velocity, a bank of reference signals

are built using this approach to compare to the received signal to the reference signal.

The reference signal built with the reference velocity corresponding to the target’s

actual velocity has a maximum correlation with the received signal.

After replacing the interp1 function with the algorithm discussed above, the mem-

ory usage of the correlation routine was sufficiently low to use MATLAB®’s parallel

processing toolbox. Running the routine in parallel across four processors decreased

the processing time to 5.38 minutes while maintaining the same results. Next, in

step seven, the fft function used for signal correlation was optimized to improve pro-

cessing speed and memory. MATLAB®’s fft function operates most efficiently when

the number of points in the FFT is set to a power of two. By default, the number

of points used is equal to the length of the vector being transformed. Lievsay [18]

kept the default and the FFT was running NFFT = 200M points. To speed up the

FFT, the number of points was set to the nearest power of two without exceeding

59

Figure 4.1. Representation of received signal compared to transmitted signal for an
inbound target.

NFFT = 200M, which is 227 = 134217728. The result of this change to the FFT was

a 7 GB reduction in RAM and over half a minute improvement to parallel processing

using four cores of the computer. However, the drawback to this approach is the

elongating of the target response along the velocity axis as can be seen in Figure 4.2.

The elongation that results from fewer FFT points is equivalent to diminished ve-

locity resolution due to a shorter measurement window, T . For this target scenario,

however, the diminished velocity resolution is negligible.

Not only did the range and velocity estimation performance remain the same using

only the signs of the received and reference signals for correlation, but as expected, the

post-processing SNR did not change significantly. As discussed in Section 2.5.4, the

pre-processing SNR has an impact on the post-processing SNR. Quantization noise

affects the pre-processing SNR as seen in (2.29), limiting the maximum pre-processing

SNR in a binary ADC to 7.86 dB. For a dominant target with a pre-processing SNR

60

(a) Lievsay’s results (b) After step 4

(c) After step 6 (d) After step 7

Figure 4.2. Results for target at 10 m with inbound relative radial velocity of 5 m/s.

greater than 7.86 dB, the binary ADC limitations will have a negligible impact to

the post processing SNR defined by (2.36). In fact, the post-processing SNR actually

improved slightly as can be seen in Table 4.2. Only a subset of the eight steps is

shown in this table, but the results show no negative impact to the post-processing

SNR by using a binary ADC compared to an eight-bit ADC for a single target using

the AFIT RNR.

A graphical view of the post-processing SNR comparison can be seen in the range-

velocity plots in Figures 4.3 and 4.4. In Figure 4.3, the post-processing SNR for the

full eight-bit data is plotted against (a) range perfectly matched in velocity and (b)

velocity perfectly matched in range. In Figure 4.4, the post-processing SNR for the

simulated binary data is plotted in two-dimensions as well. A comparison of these

61

Table 4.2. Post-processing SNR comparison of 2D processing results.

Step Description ADC type (simulated) Change in SNR

1 Lievsay’s results Eight-bit ADC -
4 Signs only Binary ADC (sim) 0.5 dB
5 Replaced interp1 Binary ADC (sim) 1.3 dB
7 FFT points Binary ADC (sim) 1.1 dB

figures shows that the binary ADC will not degrade post-processing SNR for a single

target with sufficient pre-processing SNR.

(a) (b)

Figure 4.3. Full eight-bit ADC post-processing SNR plotted against (a) range perfectly
matched in velocity and (b) velocity perfectly matched in range.

(a) (b)

Figure 4.4. Simulated binary ADC post-processing SNR plotted against (a) range
perfectly matched in velocity and (b) velocity perfectly matched in range.

62

At this point, it is clear that switching to a binary ADC alone does not allow

for mass parallelization in the AFIT RNR using a GPU or FPGA. Further memory

optimization must be accomplished to take advantage of the available GPU. The

next section details the results of such an optimization effort aimed at reducing the

memory burden in order to perform correlation processing on a GPU.

4.2.2 FFT Segmentation Results.

The second phase of the 2D processing improvements involved the three-step pro-

cess discussed in Section 3.3.2. After configuring the AFIT RNR 2D processing

algorithm for implementation on the GPU as previously discussed, the algorithm was

applied to the sample transmit and receive data according to the test procedure. As

can be seen in Table 3.2, the two computers used for the 2D processing share similar

specifications. The first computer, however, has faster processing speeds leading to

faster CPU operations. The second computer is outfitted with a higher-end GPU

model and resulted in faster GPU operations. This difference in processing hardware

explains why, when comparing Table 4.3 to Table 4.4, the first computer performs

the 2D processing faster when only the local CPUs are used. Conversely, the sec-

ond computer performs the 2D processing faster when the GPU is tasked with the

majority of the signal processing.

Table 4.3. Summary of computer 1 processing times per reference velocity

Reference Signal Correlation Total
Step Description Time (seconds) Time (seconds) Time (seconds)

1 No GPU 1.49 8.27 9.76
2 MATLAB® 1.55 3.72 5.27
3 Jacket® 1.92 9.42 11.34

Another factor affecting the speed of the 2D processing is the GPU interface used.

Table 4.5 reveals that the MATLAB® GPU implementation is faster than Jacket®

63

Table 4.4. Summary of computer 2 processing times per reference velocity

Reference Signal Correlation Total
Step Description Time (seconds) Time (seconds) Time (seconds)

1 No GPU 1.78 10.23 12.01
2 MATLAB® 1.70 2.61 4.31
3 Jacket® 1.98 8.73 10.71

for this 2D processing algorithm. MATLAB®’s parallel computing toolbox performs

faster because of its inherent speed in matrix math. The FFT segments were placed

in matrix format to process many FFTs simultaneously, thus reducing the number

of loops required to process all FFT segments for correlation. Jacket®, on the other

hand, has a very efficient gfor loop not available on the MATLAB® interface, but its

known memory allocation issues did not allow for efficient matrix FFT calculations.

Table 4.5. Summary of 2D processing time for 25 reference velocities

Computer 1 Computer 2
Step Description Time (minutes) Time (minutes)

1 No GPU 4.07 5.00
2 MATLAB® 2.20 1.80
3 Jacket® 4.75 4.46

Tables 4.3 and 4.4 also reveal the fact that reference signal generation accounts

for approximately 25 to 30% of the overall 2D processing time. This signal generation

time can be eliminated by using a template playback in place of the thermal noise

source. A template playback strategy involves building a digital noise transmit signal

and using a digital-to-analog converter (DAC) in place of the thermal noise generator.

This template playback approach introduces periodicity and leads to a transmit signal

that is not truly random, but the desired low probability of intercept attribute can

be preserved using strategies as discussed in [30].

Generating the reference signal bank a priori would significantly reduce the 2D

64

processing time of the AFIT RNR, but it would require a significant amount of

memory to store all the reference signals. The current algorithm steps through a

vector of reference velocities. For each reference velocity, it builds a single reference

signal and performs the cross-correlation with the receive signal. Once the cross

correlation is complete and stored, the algorithm clears the reference signal from

memory and generates a new reference signal based on the next reference velocity.

This iterative process takes time but minimizes the number of lengthy signals that

must be stored in memory.

Although the reference signal generation time is a major factor in the overall

processing time, the correlation processing consumes the majority of the overall time

and is still prohibitively long. Improvements to the correlation algorithm need to be

made for this algorithm to be applied in a practical radar application. Some thoughts

for future work will be discussed in the next chapter.

4.2.3 2D Processing Analysis.

Decreasing the simultaneous range-velocity processing time of the AFIT RNR by

more than an order of magnitude from Tp ≈ 42 minutes to Tp < 2 minutes is a

significant improvement. Unfortunately, a significant effort is still required to bring

the processing time to near real-time. Simultaneous range and velocity processing

has its advantage in that it can separate two targets traveling at different velocities

within the same range bin. This characteristic is highly desired for collision avoidance

in autonomous vehicles. Future research efforts in the AFIT RNR should continue to

set near-real time 2D processing as a primary objective.

65

4.3 SNR Analysis Results

This section presents the results of the SNR analysis effort described in the pre-

vious chapter. First, a graphical comparison is made between the Simulink® model

and the measured data. Second, the results of the AFIT RNR SNR analysis is sum-

marized.

4.3.1 Simulink® Model Results.

A software model is useful to allow the radar designer to explore the current

design as well as determine the feasibility of proposed design changes. As the AFIT

RNR progresses toward a collision avoidance application, many design changes are

on the horizon. A model was developed in Simulink® to emulate the performance of

the AFIT RNR. The top layer of the AFIT RNR Simulink® model can be seen in

Figure 4.5.

Figure 4.5. The top layer of the AFIT RNR Simulink® model, designed to aid in
determining the feasibility of proposed hardware design changes.

To prove the accuracy of the model and its effectiveness as a design tool, the

simulated performance must be compared to measured performance. Measurements

were taken according to the procedures outlined in Section 3.5.2 and are presented

66

here and in Appendix A. There is, however, negligible difference between measured

results of the two AFIT RNR hardware boxes. Because of the similarities, only the

results from AFIT RNR hardware box 3 are presented in this chapter. However, all

results can be seen in Appendix A.

The model must be able to approximate the transmit signal effectively in order to

match measured AFIT SNR results to be discussed in Section 4.3.2. As discussed in

Section 3.2.1, the transmit path includes the thermal noise source, an LPF, a HPF,

and a signal splitter. Those components are directly modeled in Simulink® as seen

in Figure 4.6.

Figure 4.6. Components of the AFIT RNR transmit path as modeled in Simulink®.

The results of the simulated transmit signal power spectral density compared to

the average measured signal power spectral density can be seen in Figure 4.7, where

it is clear that the transmit path is modeled accurately in the AFIT RNR Simulink®

model. The noise signal in black represents a single realization of the simulated, or

expected, signal resulting from the thermal noise source. The signal in blue is a single

realization of the simulated transmit signal after band-pass filtering using the LPF and

HPF. The green dotted line represents the measured noise signal emanating from the

thermal noise generator. As with all measured signals to be presented, the measured

signal was averaged across 100 realizations to ensure any abnormalities or spurious

interferences are minimized. Finally, the red dotted line represents the transmit

signal measured immediately after the band-pass filtering. A single realization of the

modeled results is presented in Figure 4.7 to highlight the variance within the signal

due to the WGN source. In the remaining graphical comparisons presented in this

67

chapter and in Appendix A, the model results will be averaged across 100 realizations

for a direct comparison with the measured results.

Figure 4.7. Comparison of the average measured transmit signal with a single realiza-
tion of the transmit signal modeled in Simulink®.

The environment subsystem is designed to model the return from a single, station-

ary target in an unknown environment. It was constructed using three gain blocks

and a transport delay block as can be seen in Figure 4.8. The first gain block la-

beled “PathLoss1” represents the range to the target and the spreading loss, given

by 1/((4�)3R4). The “RCS1” gain block represents the target gain factor. For the

flat-plate target used in this research effort, the target gain factor is a combination

of the target RCS, the wavelength squared and the time-bandwidth product given by

4�w2ℎ2�2BT/�2. The range to a target is determined in a radar based on the two-

way transit time which is represented in the environment subsystem by the transport

delay block labeled “Delay1”.

68

The final gain block in the environment subsystem is labeled “EnvLoss” and is

essentially a “catch-all” to account for external environmental factors. Multipath, an-

tenna coupling, antenna polarization, clutter, and external interference are just a few

of the factors that affect the return of a radar signal from a real-world environment.

Figure 4.8. The environment subsystem, used to model the return from a single sta-
tionary target, is composed of three gain blocks and a transport delay block.

To determine the accuracy of the environment subsystem of the AFIT RNR

Simulink® model, a comparison between the measured receive signal and the mod-

eled signal is required. As stated in Section 3.4.2, the environment subsystem was

expected to cause the most significant discrepancy between the measured and sim-

ulated data. That expectation has proven to be true as can be seen in Figure 4.9,

where the measured and simulated receive signal from a target at 6 m using VV po-

larization is illustrated. A comparison of the measured receive signal to the simulated

receive signal shows that there is some coloring to the receive signal resulting from

the external interference discussed in Section 3.4.2.

Even without a detailed environment subsystem, the model effectively estimates

the return echo in a general sense. For an example of the model’s flexibility, consider

Figure 4.10. The return echo has a smaller amplitude than the echo from Figure 4.9

because the target is farther from the radar.

A measurement was taken with the RNR transmitter off and a 50-ohm load on

the receive antenna input to analyze the receiver system noise. The results of the

69

(a) (b)

Figure 4.9. Comparison of the average measured receive signal of target at 6 m in VV
polarization with the same signal modeled in Simulink® for (a) the standard AFIT
RNR antenna configuration, and (b) the standard gain horns in place of the LPAs.

(a) (b)

Figure 4.10. Comparison of the average measured receive signal of target at 8 m in VV
polarization with the same signal modeled in Simulink® for (a) the standard AFIT
RNR antenna configuration, and (b) the standard gain horns in place of the LPAs.

measurements can be seen in Figure 4.11. The noise response has a downward trend

across the passband. Because the noise measurement was taken after the cascaded

LNAs, a negative slope is expected in the noise measurement. Except for the down-

ward slope caused by the LNAs, the assumption that the received noise power spectral

density is not a function of frequency but solely a function of bandwidth as defined

by the LPF and HPF is accurate.

Continuing through the receive path, the AFIT RNR Simulink® model accurately

70

Figure 4.11. The noise floor of the AFIT RNR, measured with the transmitter off and
a 50-ohm load on the receive antenna input, compared to the modeled system noise.

predicts the performance of the AFIT RNR receive components. This can be seen

by examining Figure 4.12, where the average measured receive signal after the filters

and LNAs is compared to the simulated representation of the same signal. The same

signal coloring found in Figure 4.10, which is representative of the receive signal before

the receive path components, is found in Figure 4.12. Similarly, the signal changes

caused by the filters and LNAs are consistent between the measured signal and the

simulated version.

The polarization of the antennas also affects the measured signals, as can be seen

in Figure 4.13, where a top-down view of the antenna configuration with a basic

representation of the antenna pattern is illustrated. The differences between the

return echoes of the horizontal (HH) and vertical (VV) polarizations are expected

due to the antenna patterns of the LPAs. In the horizontal configuration, the receive

antenna will have less cross-talk (or coupling) from the transmit antenna due to the

71

(a) (b)

Figure 4.12. Comparison of the average measured receive signal at the ADC of target
at 8 m in VV polarization with the same signal modeled in Simulink® for (a) the
standard AFIT RNR antenna configuration, and (b) the standard gain horns in place
of the LPAs.

null in the antenna pattern where the receive antenna is located. However, much more

energy is returned from the floor in this configuration. With the vertical polarization

configuration, the antenna pattern null is pointed at the floor, minimizing returns

from the floor. However, there is no null in the direction of the receive antenna,

providing significant cross-talk that must be accounted for.

In the Simulink® model, antenna polarization mismatch was simply modeled as

a constant change to the environmental loss gain block. This gain factor did not

account for the frequency domain signal coloration, but it did generally represent the

change in signal amplitude as a result of antenna polarization. Figure 4.14 highlights

the overall change in amplitude and coloration difference in HH and VV polarization

responses.

The effects of polarization on target detection and estimation can be seen when

examining the correlation results. As can be seen in Figure 4.15, the VV polariza-

tion cross-talk from the transmit antenna to the receive antenna results in very high

correlation at a distance of 1 meter. It is no coincidence that this correlation peak is

also the distance between the transmit and receive antennas on the AFIT RNR. In

72

(a)

(b)

Figure 4.13. In (a) HH configuration, the antenna null reduces coupling from the trans-
mit to receive antenna, but increases the received echo from the floor. The opposite is
true for (b) VV polarization.

contrast, the correlation results from measured data in the HH polarization does not

offer such significant correlation as a result of antenna cross-talk.

As a final measure of the accuracy of the AFIT RNR model, consider the compar-

ison of the correlation response of the measured data versus the Simulink® model’s

73

Figure 4.14. Comparison of the average measured receive signal power spectral density
at the ADC input in HH and VV polarization using the LPAs.

Figure 4.15. Comparison of the measured correlation results of a target at 6 meters
using HH and VV polarization.

correlation results as seen in Figure 4.16. The normalized squared magnitude of the

correlation results measured for a target at 6 m using HH polarization are compared

to the model for the AFIT RNR with its LPAs as well as when the standard gain

74

horn is used in place of the LPAs. The target is clearly identified at 6 m and has

a similar post-processing SNR in the simulated and measured results for both the

standard and horn-modified AFIT RNR configurations. A thorough discussion of the

post-processing SNR is further presented in the next section.

(a) (b)

Figure 4.16. In the (a) standard AFIT RNR configuration with LPAs, the correlation
results of a target at 6 meters using HH polarization are consistent. In the (b) horn-
modified AFIT RNR configuration, correlation results are also consistent.

4.3.2 SNR Analysis.

There are two basic ways to evaluate the pre-processing SNR of the AFIT RNR.

As discussed in section 2.5.2, the signal is a function of frequency, thus the SNR can

be characterized as a function of frequency and measured in SNR/Hz. Additionally,

the signal and noise power can be integrated across the bandwidth to determine the

the total receive signal and noise power. Both methods for examining the AFIT RNR

are exploited in this research effort. Included in the SNR analysis is a comparison

of the pre-processing SNR calculated using (2.28), the pre-processing SNR resulting

from the Simulink® model, and the measured pre-processing SNR. The SNR analysis

will culminate in a comparison of the simulated and measured post-processing SNR.

Because the receive signal power is a function of frequency, the pre-processing SNR

is consequently a function of frequency and is best viewed on a graph. Figure 4.17 is

75

representative of the SNR results in terms of dB/Hz. The simulated SNR frequency

response does not mimic exactly the measured results, but overall the simulated

response is close using in the standard AFIT RNR configuration. When the LPAs

are replaced with the standard gain horns, the SNR as a function of frequency is not

as close when comparing the measured and simulated results. This difference is due to

the limitations of the DPO measurement device. The dynamic range of the ADCs in

the DPO were adjusted to view the response in the 400 to 800 MHz band of interest,

which resulted in ADC saturation and clipping the out-of-band signal. Adjusting the

reference level (and hence the dynamic range of the ADCs) to view the out-of-band

signal results in clipping of the passband signal. The result is a measurement with

an artificially high noise level. More importantly, the frequency response coloration

could not be simulated in the model, necessitating a thorough comparison of the

integrated SNR in place of this SNR per Hz comparison.

(a) (b)

Figure 4.17. A comparison between the simulated and measured pre-processing SNR
as a function of frequency is made using (a) the standard AFIT RNR configuration
and (b) the horn-modified configuration. Target at 6 meters, HH polarization.

The integrated pre-processing SNR of the AFIT RNR was calculated using (2.28),

derived from the Simulink® model results, and derived from the measured data. Ide-

ally, all three SNR results would match exactly. However, as with any other physical

system, the results do not match the ideal case exactly. The results, however, are

76

consistent and point to the accuracy of the model. Table 4.6 compares the calculated,

simulated, and measured pre-processing SNR results across LPAs in HH and VV po-

larization, and targets at 6 and 8 meters. Likewise, Table 4.7 compares the calculated,

simulated, and measured SNR results across the standard gain horn antennas in HH

and VV polarization, and targets at 6 and 8 meters.

Table 4.6. Comparison of calculated vs. simulated vs. measured SNR results

Calculated Simulated Measured
Pol/Range (m)/T (�s) SNR (dB) SNR (dB) SNR (dB)

HH/6/1.00 58.489 54.293 49.879
HH/8/1.00 53.492 48.084 50.330
VV/6/1.00 58.489 69.293 65.433
VV/8/1.00 53.492 63.086 65.382

Table 4.7. Comparison of calculated vs. simulated vs. measured pre-processing SNR
results using standard gain horns in place of the LPAs

Calculated Simulated Measured
Pol/Range (m)/T (�s) SNR (dB) SNR (dB) SNR (dB)

HH/6/1.00 70.489 61.047 60.297
HH/8/1.00 65.492 55.682 59.923
VV/6/1.00 70.489 58.047 57.783
VV/8/1.00 65.492 52.682 55.794

As a whole the results listed in Table 4.6 and Table 4.7 show consistency among

the calculated, simulated, and measured pre-processing SNRs, but there are three

cases that attribute to inconsistencies that should be highlighted. First, differences

between the calculated, simulated, and measured results can be attributed to the

antenna gain. For the calculated SNR, a constant antenna gain of 6 dB is used

for the LPAs, and 12 dB for the standard gain horns. For the simulated SNR, the

estimated gain curve as a function of frequency is used for the LPAs, and the known

gain curve as a function of frequency is used for the standard gain horns. These

77

differences in gain lead to inherent differences in the results.

In the second case, the calculated SNR does not change between HH and VV

polarization, simply because (2.28) does not account for antenna polarization. As

discussed in Section 4.3.1, the antenna polarization was accounted for in the model,

leading to higher simulated SNR when using the LPAs in VV polarization versus

HH polarization. The measured SNR results also show a higher SNR when using

the LPAs in VV polarization. Conversely, higher SNR is measured when using the

standard gain horns in HH polarization versus VV polarization. This difference is

accounted for in the simulation.

The third inconsistency is found in the measured SNR of a target at 6 versus 8

meters. In both the calculated and simulated SNR results, the target at 8 meters

consistently has a lower SNR than the target at 6 meters, as expected. However, the

measured SNR results using the LPAs show negligible differences between the flat-

plate target at 6 meters and 8 meters. This inconsistency results from the environment

in which the measurements were collected. Although the measurements were collected

in a radar range with radar absorbing material covering all surfaces, the range was

constructed primarily for measurements in the X-band. Because the AFIT RNR

operates in the UHF band, the radar absorbing material is less effective than it is

for X-band radar. Radar returns from the walls, ceiling, floor, and other equipment

in the room are included in the receive signal. The clutter included in the measured

receive signal using the LPAs is so high that it reduces the SNR, resulting in no SNR

difference between the target at 6 and 8 meters. The differences in measured SNR

between the flat-plate target at 6 meters and 8 meters using the standard gain horns,

however, is not negligible. In both the HH and VV polarizations, the SNR is lower for

the target at 8 meters as expected. The horn antenna pattern is much more directive

than the LPAs, resulting in more energy on the target compared the LPAs, making

78

the target more dominant in the environment.

Although the target environment is not ideal, the RNR has no trouble determin-

ing target location based on the correlation results. As discussed in Section 2.5.4, the

correlation results yield the post-processing SNR, which is expected to be approxi-

mately equal to the number of samples in the signal. The number of samples used in

the correlation processing for this experiment is N = 1500, or 31.7 dB. The measured

results, with background subtraction as discussed in Section 3.5.2, and the model

simulation results are consistent with this 31.7 dB expectation as seen in Figure 4.18.

The simulated post-processing SNR or peak-to-average sidelobe ratio is 29.8 dB, and

the post-processing SNR of the measured results is 28.9 dB.

Figure 4.18. This plot presents the normalized results of the simulated and measured
correlation with background subtraction. The average sidelobe level is also shown,
highlighting the post-processing SNR of the AFIT RNR.

79

4.4 Chapter Conclusion

The observations presented in this chapter highlight the results of the research

effort aimed and evolving the AFIT RNR toward a collision avoidance application.

The 2D processing time of the AFIT RNR was reduced over twenty fold, from Tp ≈ 42

minutes to Tp < 2 minutes, and the model developed in Simulink® proved to be

an effective representation of the radar system. Additionally, the AFIT RNR was

analyzed in terms of the signal-to-noise ratio providing a comparison of the calculated

SNR, simulated SNR, and measured SNR. The next chapter will provide a review of

the basic research objectives, and draw conclusions based on the research results.

80

V. Conclusions

5.1 Chapter Overview

The AFIT RNR offers unique sensor characteristics that make its progression to a

collision avoidance sensor a logical choice. Before the system can be miniaturized and

implemented on a wheeled or airborne autonomous vehicle, a number of improvements

must be made. This research effort was aimed at advancing AFIT RNR capability

as it progresses towards future applications. This chapter reviews the stated research

goals, presents a summary of the research results and contributions, and identifies

areas for future study to further advance the AFIT RNR as an effective collision

avoidance sensor.

5.2 Research Goals

To be suitable as a collision avoidance sensor on a small autonomous vehicle,

the physical hardware size, weight, and power must be minimized. Similarly, the

signal processing algorithm must be updated and configured for the application. This

research effort focused on the latter, primarily in the areas of range-velocity processing

and SNR analysis of the current AFIT RNR. To minimize the 2D processing time,

the algorithm was completely overhauled for implementation on a FPGA or GPU.

Additionally, the basic software model representing the AFIT RNR required updates

to enable efficient analysis supporting future system changes.

5.3 Results and Contributions

The overall research effort resulted in successful achievement of both primary

research goals. 2D range-velocity processing was demonstrated using a GPU to dis-

tribute the correlation processing across hundreds of processing cores. As a result,

81

the overall processing time for Nv = 25 reference velocities was reduced more than an

order of magnitude from Tp ≈ 42 minutes to Tp < 2 minutes. Similarly, the research

effort demonstrated the feasibility of using a binary ADC in place of the eight-bit

ADC to reduce the 2D processing computational burden in high SNR environments.

However, the research concluded that real-time 2D processing in the AFIT RNR is

not yet feasible using today’s technology.

A comprehensive software model was developed to emulate AFIT RNR perfor-

mance. The model allows the radar engineer to study the effects of hardware changes

before actually modifying the system. Additionally, the model enables efficient SNR

analysis at all points in the radar system. It was shown that the model accurately

predicts system SNR in multiple antenna and target configurations.

5.4 Future Work

Although the research goals were met, considerable effort remains to configure the

signal processing algorithm for an autonomous vehicle collision avoidance application.

Suggested improvements and ideas for future research efforts for 2D processing, mod-

eling, and an AFIT RNR collision avoidance application are presented here.

5.4.1 2D Processing Future Work.

This research effort determined that real-time 2D processing is not currently feasi-

ble, but as technology evolves, the goal of real-time simultaneous time domain range-

velocity processing may be within reach. Areas for future study focused on reaching

this goal include:

• Determine the feasibility of using a binary ADC in a multiple target environment

through simulations and experimental tests.

82

• Investigate template playback strategies, thus removing reference signal gener-

ation and shortening overall 2D processing time.

• Compile the 2D processing algorithm and port the compiled code onto an FPGA

to miniaturize the hardware footprint.

5.4.2 RNR Model Future Work.

Some suggestions for updating and improving the AFIT RNR Simulink® model

include:

• Update the model to include targets of varying sizes and shapes. Compare the

model results to measured results.

• Test model accuracy by comparing measured results in a multiple target envi-

ronment to model results in the simulated multiple target environment.

• Take the same measurements presented in Section 3.5.2 in an alternate envi-

ronment (e.g. outdoors) to confirm model robustness and accuracy.

• Include a model subsystem to account for clutter and other external environ-

mental factors that affect the radar return signal.

5.4.3 Collision Avoidance Future Work.

There are prime areas for future research that fall outside of the primary research

objectives, but are required to use the AFIT RNR as a collision avoidance sensor on

an autonomous vehicle:

• Develop a collision avoidance algorithm to include search, awareness, and avoid-

ance modes [14]. Determine decision and maneuver time based on RNR detec-

tion range, vehicle speed, and obstacle speed, size, and location.

83

• Select an autonomous vehicle type and develop the interface between sensor

algorithm and vehicle control software.

• Determine the impact of clutter on obstacle identification.

84

Appendix A. Simulink Model Results

(a) Noise source, TP1 (b) Filtered noise source, TP2

(c) Noise signal at TX antenna, TP3 (d) System noise measured with RF off, TP5

Figure A.1. The measured signals, averaged across 100 realizations, of RNR unit 3 are
compared to the simulated signals.

85

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.2. The (a) and (b) measured receive path signals, averaged across 100 real-
izations, are compared to the simulated signals. The (c) measured correlation result is
compared to the simulated correlation result. All three plots depict results from RNR
unit 3, with a 6 meter target and HH polarization.

86

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.3. The (a) and (b) measured receive path signals, averaged across 100 real-
izations, are compared to the simulated signals. The (c) measured correlation result is
compared to the simulated correlation result. All three plots depict results from RNR
unit 3, with a 6 meter target and VV polarization.

87

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.4. The (a) and (b) measured receive path signals, averaged across 100 real-
izations, are compared to the simulated signals. The (c) measured correlation result is
compared to the simulated correlation result. All three plots depict results from RNR
unit 3, with a 8 meter target and HH polarization.

88

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.5. The (a) and (b) measured receive path signals, averaged across 100 real-
izations, are compared to the simulated signals. The (c) measured correlation result is
compared to the simulated correlation result. All three plots depict results from RNR
unit 3, with a 8 meter target and VV polarization.

89

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.6. The (a) and (b) measured receive path signals, averaged across 100 real-
izations, are compared to the simulated signals. The (c) measured correlation result is
compared to the simulated correlation result. All three plots depict results from RNR
unit 3 using standard gain horns in place of the LPAs, with a 6 meter target and HH
polarization.

90

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.7. The (a) and (b) measured receive path signals, averaged across 100 real-
izations, are compared to the simulated signals. The (c) measured correlation result is
compared to the simulated correlation result. All three plots depict results from RNR
unit 3 using standard gain horns in place of the LPAs, with a 6 meter target and VV
polarization.

91

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.8. The (a) and (b) measured receive path signals, averaged across 100 real-
izations, are compared to the simulated signals. The (c) measured correlation result is
compared to the simulated correlation result. All three plots depict results from RNR
unit 3 using standard gain horns in place of the LPAs, with a 8 meter target and HH
polarization.

92

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.9. The (a) and (b) measured receive path signals, averaged across 100 real-
izations, are compared to the simulated signals. The (c) measured correlation result is
compared to the simulated correlation result. All three plots depict results from RNR
unit 3 using standard gain horns in place of the LPAs, with a 8 meter target and VV
polarization.

93

(a) Target at 6 m, HH Polarization (b) Target at 8 m, HH Polarization

(c) Target at 6 m, VV Polarization (d) Target at 8 m, VV Polarization

Figure A.10. The receiver output (correlation results) of the AFIT RNR in its standard
configuration with LPAs compared to the receiver output of the AFIT RNR using
standard gain horns in place of the LPAs.

94

(a) Noise source, TP1 (b) Filtered noise source, TP2

(c) Noise signal at TX antenna, TP3 (d) System noise measured with RF off, TP5

Figure A.11. The measured signals, averaged across 100 realizations, of RNR unit 5
are compared to the simulated signals.

95

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.12. The (a) and (b) measured receive path signals, averaged across 100
realizations, are compared to the simulated signals. The (c) measured correlation
result is compared to the simulated correlation result. All three plots depict results
from RNR unit 5, with a 6 meter target and HH polarization.

96

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.13. The (a) and (b) measured receive path signals, averaged across 100
realizations, are compared to the simulated signals. The (c) measured correlation
result is compared to the simulated correlation result. All three plots depict results
from RNR unit 5, with a 6 meter target and VV polarization.

97

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.14. The (a) and (b) measured receive path signals, averaged across 100
realizations, are compared to the simulated signals. The (c) measured correlation
result is compared to the simulated correlation result. All three plots depict results
from RNR unit 5, with a 8 meter target and HH polarization.

98

(a) Receive signal after RX antenna, TP4 (b) Receive signal at ADC, TP5

(c) Correlation results

Figure A.15. The (a) and (b) measured receive path signals, averaged across 100
realizations, are compared to the simulated signals. The (c) measured correlation
result is compared to the simulated correlation result. All three plots depict results
from RNR unit 5, with a 8 meter target and VV polarization.

99

Appendix B. MATLAB Code

Listing B.1. This function performs 2D range and velocity processing of the AFIT

RNR.

1 function [corr , range] = ...

process2D(tx, rx, vref , Sample_Frequency , Rmax , GPU)

%%%

%

% This function performs 2 dimensionsal (range and velocity)

6 % processing of the AFIT Random Noise Radar (RNR) signal ,

% simulating the normalized matched filter ouput. Used to

% post -process Lievsay 's data measurement at 1.25 GSamp/sec with

% an inbound target at -5 m/s at at 10 m range.

%

11 % Authored by Capt Joel Thorson (modified from Capt Lievsay)

% 24 October 2011

%

% Inputs:

% tx - Raw data from transmit channel

16 % rx - Raw data from receive channel

% vref - vector of reference velocities for correlation

% Sample_Frequency - Should be either 1.25e9 or 2.5 e9 GS/s

% Rmax - Maximum range in meters for correlation

% GPU - if 0, no GPU; if 1, MATLAB GPU; if 2, Jacket. Default 0

21 %

% Output:

% corr - results of correlation across all reference velocities

% range - range vector corresponding to range axis of corr

%

26 % Other functions required:

% interpFast () - generates reference signals/no parallelization

100

% -and -

% correlate_jacket () - performs cross corr on GPU using Jacket

%

31 % -or-

% interpFaster () - gnerates ref signals in matrix form/no GPU

% -and -

% correlate_no_loop () - faster version/no GPU

%

36 % -or-

% interpFaster_GPU () - generates ref signals in mx form on GPU

% -and -

% correlate_no_loop_GPU () - faster , GPU using MATLAB interface

%

41 %%%

%% Set Parameters

c = 299792458; %Speed of light

fs = Sample_Frequency;

46 Number_of_Reference_Velocities = length(vref);

N = length(tx); %Length of signal

d = c/fs; %Distance = Rate * Time

L = round (2* Rmax/d); %Finds the number of range bins

51 range =(1:L)*d/2; %Range vec; saved/used for plotting

G = round(N/L); %Number of segments to split fft

if GPU ∕= 2 %Only jacket uses rx in vector form

rx = reshape(rx ,L,G); %Reshape rx into mx of vecs , length L

56 rx = [rx; zeros(L,G,'single ')]; %Can 't zero pad on GPU fft

end

%% Cycle through all Reference Velocities

tic

101

corr=zeros(Number_of_Reference_Velocities ,L); %Preallocate

61 h = waitbar(0,'Cycling through each reference velocity ...');

for ii=1: Number_of_Reference_Velocities

if GPU == 1 %use MATLAB 's GPU interface

% build reference signal

66 g_sigref = interpFaster_GPU(tx,vref(ii),fs,L);

% calculate cross correlation function from segments

corr(ii ,:) = correlate_no_loop_GPU(g_sigref ,rx ,L,G);

clear g_sigref

71 elseif GPU == 2 %use Jacket 's GPU interface

% build reference signal

sigref = interpFast(tx ,vref(ii),fs);

% g_sigref = interpFaster_jacket(tx,vref(ii),fs,L);

% calculate cross correlation function from segments

76 corr(ii ,:) = correlate_jacket(sigref ,rx ,L,G);

% corr(ii ,:) = correlate_jacket_faster(g_sigref ,rx,L,G);

else %No GPU interface

% build reference signal

81 sigref = interpFaster(tx ,vref(ii),fs ,L);

% calculate cross correlation function from segments

corr(ii ,:) = correlate_no_loop(sigref ,rx ,L,G);

end

86 % Display waitbar and # reference velocities completed

fprintf('%d of %d Completed\n',ii ,...

Number_of_Reference_Velocities);

waitbar(ii/Number_of_Reference_Velocities ,h);

toc

91 end

102

close(h)

return

103

Listing B.2. This function generates a reference signal bank using vectors without

parallelization.

function [sigref] = interpFast(tx,vref ,fs)

2 %%%

% This function replaces the interp1 function for linear

% interpolation of AFIT 's random noise radar signal , used to

% build a reference signal bank. It is simply an index shift to

% dialate the transmit signal according to a specified velocity ,

7 % while maintaing sample rate.

%

% Inputs:

% tx - signal that was tranmitted

% vref - velocity that determines dialation of transmit signal

12 % fs - sampling frequency

%

% Output:

% sigref - The reference signal used for correlation

%

17 % Author: Capt T. Joel Thorson - 22 September 2011

%%%

c=299792458; %Speed of light

Ts = 1/fs; %Time between samples

22

L = length(tx);

delt =2* vref /((c-vref)*fs); %Per sample time shift (const v.)

N = ceil(L*abs(delt/Ts)); %max time shift for given velocity

txshift = zeros(N+1,1); %allocate vector of shift amounts

27 remainder = zeros(1,N); %allocate overflow tracker

sigref = ones(L,1,'single '); %set to all ones to start

104

if vref < 0 %For Negative Reference Velocities

for n = 1:N+1

32 remainder(n) = (n-1)*((Ts/abs(delt) - Ts) - ...

floor(Ts/abs(delt)-Ts));

%Tracks overflow to determine when to add shift

txshift(n+1) = ceil(Ts/abs(delt)/2) + ...

(n-1)*(floor(Ts/abs(delt)-Ts)) + floor(remainder(n));

37 %Determine when (what sample) to shift signal

if txshift(n+1)+n-1 > L

sigref(txshift(n)+1:L-n+1) = ... %sigref is shifted

tx(txshift(n)+n:L); %version of tx

else

42 sigref(txshift(n)+1: txshift(n+1)) =...%sigref shifted

tx(txshift(n)+n:txshift(n+1)+n-1);%version of tx

end

end

47 elseif vref ==0 %No change to signal

sigref=tx;

else %For Positive Reference Velocities

for n = 1:N+1

52 remainder(n) = (n-1)*((Ts/abs(delt) + Ts) - ...

floor(Ts/abs(delt)+Ts));

txshift(n+1) = ceil(Ts/abs(delt)/2 + Ts) + ...

(n-1)*(floor(Ts/abs(delt) + Ts)) + floor(remainder(n));

%Determine when (what sample) to shift signal

57 if txshift(n+1) > L

sigref(txshift(n)+1:L) = ... %sigref is shifted

tx(txshift(n)-n+2:L-n+1); %version of tx

else

sigref(txshift(n)+1: txshift(n+1)) =...%sigref shifted

105

62 tx(txshift(n)-n+2: txshift(n+1)-n+1);%version of tx

end

end

end

return

106

Listing B.3. This function generates a reference signal bank in matrix form without

parallelization. It is faster than interpFast but requires more memory.

function [sigref] = interpFaster(tx,vref ,fs,L)

%%%

% This function replaces the interp1 function for linear

4 % interpolation of AFIT 's random noise radar signal , used to

% build a reference signal bank. It is simply an index shift to

% dialate the transmit signal according to a specified velocity ,

% while maintaing sample rate.

%

9 % Inputs:

% tx - signal that was tranmitted

% vref - velocity that determines dialation of transmit signal

% fs - sampling frequency

% L - number of range bins

14 %

% Output:

% sigref - The reference signal used for correlation in the

% matrix format required for use in the correlate_no_loop

% function. This is a LxG matrix on the CPU in the format

19 % required for correlate_no_loop ()

%

% Author: Capt T. Joel Thorson - 24 October 2011

%%%

24 c=299792458; %Speed of light

Ts = 1/fs; %Time between samples

N = length(tx);

G = N/L; %Number of segments

29 delt =2* vref /((c-vref)*fs); %Per sample time shift

107

K = ceil(N*abs(delt/Ts)); %max time shift for given velocity

% tic;

sigref = zeros(L,N/L,'single '); %set to all ones to start

% toc;

34 if vref < 0 %For Negative Reference Velocities

remainder = ((1:K+1) -1).*((Ts/abs(delt) - Ts) - ...

floor(Ts/abs(delt)-Ts));

shift_index = ceil(Ts/abs(delt)/2) +((1:K+1) -1).*...

(floor(Ts/abs(delt)-Ts)) + floor(remainder);

39 shift_index(shift_index >N) = []; %don 't shift > signal length

K = length(shift_index);

extra = mod(shift_index (1),L);

column = floor(shift_index (1)/L);

segment = tx(1:(shift_index (1)-extra));

44 sigref (:,1: column) = reshape(segment ,L,column);

for k = 2:K

beginning = L-extra;

compress = k-1;

49 sigref(:,column +1) = ...

[tx(shift_index(k-1)-extra +1: shift_index(k-1));...

tx(shift_index(k-1)+compress +1: shift_index(k-1) +...

compress+beginning)];

column_prev = column +1;

54 extra = mod(shift_index(k)-shift_index(k-1)-beginning ,L);

column = floor(shift_index(k)/L);

segment = tx(shift_index(k-1)+compress+beginning +...

1: shift_index(k)+compress -extra);

sigref(:, column_prev +1: column) = ...

59 reshape(segment ,L,column -column_prev);

end

108

%From max tx_shift to end...

beginning = L-extra;

64 compress = K;

sigref(:,column +1) = ...

[tx(shift_index(K)-extra +1: shift_index(K));...

tx(shift_index(K)+compress +1: shift_index(K)+...

compress+beginning)];

69 column_prev = column +1;

segment = tx(shift_index(K)+compress+beginning +1:end);

columns = floor(length(segment)/L);

sigref(:, column_prev +1: column_prev+columns) =...

reshape(segment (1: columns*L),L,columns);

74

elseif vref ==0 %No change to signal

sigref=reshape(tx ,L,G);

else %For Positive Reference Velocities

79 remainder = ((1:K+1) -1).*((Ts/abs(delt) + Ts) - ...

floor(Ts/abs(delt)+Ts));

shift_index = ceil(Ts/abs(delt)/2+Ts)+((1:K+1) -1).*...

(floor(Ts/abs(delt)+Ts)) + floor(remainder);

shift_index(shift_index >N) = []; %don 't shift > signal length

84 K = length(shift_index);

extra = mod(shift_index (1),L);

column = floor(shift_index (1)/L);

segment = tx(1:(shift_index (1)-extra));

sigref (:,1: column) = reshape(segment ,L,column);

89

if K > 1;

for k = 2:K

beginning = L-extra;

stretch = k-1;

109

94 sigref(:,column +1) = ...

[tx(shift_index(k-1)-extra +1: shift_index(k-1));...

tx(shift_index(k-1)-stretch +1: shift_index(k-1) -...

stretch+beginning)];

column_prev = column +1;

99 extra = ...

mod(shift_index(k)-shift_index(k-1)-beginning ,L);

column = floor(shift_index(k)/L);

segment = tx(shift_index(k-1)-stretch+beginning +...

1: shift_index(k)-stretch -extra);

104 sigref(:, column_prev +1: column) = ...

reshape(segment ,L,column -column_prev);

end

end

%From max tx_shift to end...

109 beginning = L-extra;

stretch = K;

sigref(:,column +1) = ...

[tx(shift_index(K)-extra +1: shift_index(K));...

tx(shift_index(K)-stretch +1: shift_index(K) -...

114 stretch+beginning)];

column_prev = column +1;

columns = G-column_prev; %Columns left that need to be filled

segment = tx(shift_index(K)-stretch+beginning +1:...

shift_index(K)-stretch+beginning+columns*L);

119 sigref(:, column_prev +1:G) = reshape(segment ,L,columns);

end

return

110

Listing B.4. This function generates a reference signal bank using the GPU.

function [g_sigref] = interpFaster_GPU(tx,vref ,fs,L)

%%%

3 % This function replaces the interp1 function for linear

% interpolation of AFIT 's random noise radar signal , used to

% build a reference signal bank. It is simply an index shift to

% dialate the transmit signal according to a specified velocity ,

% while maintaing sample rate. Uses Matlab 's GPU interface.

8 %

% Inputs:

% tx - signal that was tranmitted

% vref - velocity that determines dialation of transmit signal

% fs - sampling frequency

13 % L - number of range bins

%

% Output:

% g_sigref - The reference signal used for correlation in the

% matrix format required for use in the correlate_no_loop

18 % function. This is a LxG matrix on the GPU in the format

% required for correlate_no_loop_faster ()

%

% Author: Capt T. Joel Thorson - 24 October 2011

%%%

23

c=299792458; %Speed of light

Ts = 1/fs; %Time between samples

N = length(tx);

28 G = N/L; %Number of segments

delt =2* vref /((c-vref)*fs); %Per sample time shift

K = ceil(N*abs(delt/Ts)); %max time shift for given velocity

111

if vref < 0 %For Negative Reference Velocities

33 g_sigref = parallel.gpu.GPUArray.zeros ...

(L,N/L,'single '); %allocate on GPU

remainder = ((1:M) -1).*((Ts/abs(delt) - Ts) - ...

floor(Ts/abs(delt)-Ts));

shift_index = ceil(Ts/abs(delt)/2) +((1:M) -1).*...

38 (floor(Ts/abs(delt)-Ts)) + floor(remainder);

shift_index(shift_index >N) = []; %don 't shift > length

K = length(shift_index);

extra = mod(shift_index (1),L);

column = floor(shift_index (1)/L);

43 g_segment = gpuArray(tx(1:(shift_index (1)-extra)));

g_sigref (:,1: column) = reshape(g_segment ,L,column);

clear g_segment

for k = 2:K

48 beginning = L-extra;

compress = k-1;

g_sigref(:,column +1) = [gpuArray(tx(shift_index(k-1) -...

extra +1: shift_index(k-1)));...

gpuArray(tx(shift_index(k-1)+compress +...

53 1: shift_index(k-1)+compress+beginning))];

column_prev = column +1;

extra = mod(shift_index(k)-shift_index(k-1)-beginning ,L);

column = floor(shift_index(k)/L);

g_segment = gpuArray(tx(shift_index(k-1)+compress +...

58 beginning +1: shift_index(k)+compress -extra));

g_sigref(:, column_prev +1: column) = ...

reshape(g_segment ,L,column -column_prev);

clear g_segment

end

112

63

%From max tx_shift to end...

beginning = L-extra;

compress = K;

g_sigref(:,column +1) = [gpuArray(tx(shift_index(K)-extra +...

68 1: shift_index(K)));...

gpuArray(tx(shift_index(K)+compress +1: shift_index(K)+...

compress+beginning))];

column_prev = column +1;

g_segment = ...

73 gpuArray(tx(shift_index(K)+compress+beginning +1:end));

columns = gather(floor(length(g_segment)/L));

g_sigref(:, column_prev +1: column_prev+columns) = ...

reshape(g_segment (1: columns*L),L,columns);

clear g_segment

78

elseif vref ==0 %No change to signal

g_sigref = reshape(gpuArray(tx),L,G);

else %For Positive Reference Velocities

83 g_sigref = parallel.gpu.GPUArray.zeros ...

(L,N/L,'single '); %allocate on GPU

remainder = ((1:M) -1).*((Ts/abs(delt) + Ts) - ...

floor(Ts/abs(delt)+Ts));

shift_index = ceil(Ts/abs(delt)/2+Ts)+((1:M) -1).*...

88 (floor(Ts/abs(delt)+Ts)) + floor(remainder);

shift_index(shift_index >N) = []; %don 't shift > length

K = length(shift_index);

extra = mod(shift_index (1),L);

column = floor(shift_index (1)/L);

93 g_segment = gpuArray(tx(1:(shift_index (1)-extra)));

g_sigref (:,1: column) = reshape(g_segment ,L,column);

113

clear g_segment

if K > 1;

98 for k = 2:K

beginning = L-extra;

stretch = k-1;

g_sigref(:,column +1) = ...

[gpuArray(tx(shift_index(k-1)-extra +...

103 1: shift_index(k-1)));gpuArray(tx...

(shift_index(k-1)-stretch +1: shift_index(k-1) -...

stretch+beginning))];

column_prev = column +1;

extra = ...

108 mod(shift_index(k)-shift_index(k-1)-beginning ,L);

column = floor(shift_index(k)/L);

g_segment = gpuArray(tx(shift_index(k-1)-stretch +...

beginning +1: shift_index(k)-stretch -extra));

g_sigref(:, column_prev +1: column) = ...

113 reshape(g_segment ,L,column -column_prev);

clear g_segment

end

end

%From max tx_shift to end...

118 beginning = L-extra;

stretch = K;

g_sigref(:,column +1) = [gpuArray(tx(shift_index(K)-extra +...

1: shift_index(K)));...

gpuArray(tx(shift_index(K)-stretch +1: shift_index(K) -...

123 stretch+beginning))];

column_prev = column +1;

columns = G-column_prev; %Columns left that need to be filled

g_segment = gpuArray(tx(shift_index(K)-stretch+beginning +...

114

1: shift_index(K)-stretch+beginning+columns*L));

128 g_sigref(:, column_prev +1:G) = reshape(g_segment ,L,columns);

clear g_segment

end

return

115

Listing B.5. This function performs cross correlation without using a GPU.

function [corr] = correlate_no_loop(sigref ,rx,L,G)

%%%

3 % This function performs the cross correlation of the received

% signal with the generated reference signal for a given

% velocity. It splits the signal into bite -size chunks in order

% to parallelize the fft processing. The construct for splitting

% the fft came from an article by Dr. Michal Meller titled

8 % "Some Aspects of Designing Real -Time Digital Correlators

% for Noise Radars ." 2010 IEEE

%

% Inputs:

% sigref - reference signal generated using interpFast ()

13 % rx - receive signal

% L - number of range bins

% G - number of segments to split signals for fft processing

%

% Output:

18 % corr - correlation results with L range bins for given

% reference signal

%

% Author: Capt T. Joel Thorson - 18 October 2011

%%%

23

%% Reshape rx and sigref into matices

% The matrices will consist of G vectors of lenght 2*L. The

% first L in sigref will consist of the previous segment and the

% second L will consist of the "current" segment. The first L of

28 % the rx vectors consist of the current segment and the second L

% will consist of zeros.

116

sigref_mx_bottom = reshape(sigref ,L,G); %bottom half of mx

sigref_mx_top = [zeros(L,1) sigref_mx_bottom (:,1:G-1)]; %top half

33 sigref_mx = [sigref_mx_top; sigref_mx_bottom]; %reshaped matrix

clear sigref_mx_*

%% Perform correlation on matrices using FFT.

% Ideally all G vectors will be correlated at the same time ,

38 % requiring a simple sum at the end to produce the results , but

% there is not enough memory in the GPU , so it must split

sigref_fft = fft(sigref_mx);

clear sigref_mx

43 rx_fft = fft(rx);

clear rx

dual_fft = conj(sigref_fft).* rx_fft;

clear sigref_fft rx_fft

temp = ifft(dual_fft);

48 clear dual_fft

temp = temp(L+1:end ,:);

corr = sum(temp ,2).';

return

117

Listing B.6. This function performs cross correlation on the GPU using the Jacket®

interface.

function [corr] = correlate_jacket(sigref ,rx,Rmax ,G)

%%%

% This function performs the cross correlation of the received

4 % signal with the generated reference signal for a given

% velocity. It splits the signal into bite -size chunks in order

% to parallelize the fft processing. The construct for splitting

% the fft came from an article by Dr. Michal Meller titled

% "Some Aspects of Designing Real -Time Digital Correlators

9 % for Noise Radars ." 2010 IEEE

%

% Inputs:

% sigref - reference signal generated using interpFast ()

% rx - receive signal

14 % Rmax - number of samples equivalent to maximum range

% G - number of segments to split signals for fft processing

%

% Output:

% sigref - The reference signal used for correlation

19 %

% Author: Capt T. Joel Thorson - 28 September 2011

%%%

clear g_* gpu_hook

24 nfft = 2*Rmax; %number of points in the fft

% Calculate first seg on CPU (next segs require prior seg info)

rxshort = rx(1: Rmax); %only 1 segment worth

sigrefshort = [zeros(Rmax ,1);sigref (1: Rmax)];

temp = ifft(conj(fft(sigrefshort)).*...

29 fft(rxshort ,nfft)).'; %Correlation

118

% Create GPU Variables

g_Rmax = gsingle(Rmax);

34 % create a vec of indices for use in the gfor loop --Jacket req 't

g_rx_index_vec = gsingle (1: Rmax);

g_ref_index_vec = gsingle (1:2* Rmax);

%% Execute a Double for loop

39 % The outer loop breaks the sigref and rx signals into smaller

% sections to avoid overloading the memory on the GPU.

% The inner loop is the GPU for loop. It is designed to quickly

% process the correlation in small FFT segments of length 2*Rmax

% in parallel across hundreds of processing cores on the GPU.

44

%Create outer loop size - needs to be a multiple of segment size

stepsize = 400*2* Rmax; %Bigger step size = more GPU memory req 'd

g_corr_temp = gzeros(G-1,Rmax);

49 for gg = 1: stepsize:G %Get sigref/rx signals one chunk at a time

if gg ≤ G-1-stepsize %Determine if in the last outside loop

g_rx = gsingle(rx(gg*Rmax+1 + ...

(0: stepsize*Rmax -1))); %Segment of rx as GPU variable

g_sigref = gsingle(sigref ((gg -1)*Rmax+1 + ...

54 (0: stepsize*Rmax -1))); %Segment of sigref (that has

%extra Rmax segment) as GPU variable

gfor g = gg:gg+stepsize -1 %parallelize FFT in segments

g_rx_start = (g-gg)*g_Rmax; %Start index for rx seg

59 g_ref_start = (g-gg)*g_Rmax; %Start index for ref seg

g_rxshort = g_rx(g_rx_start+g_rx_index_vec); %rx seg

g_sigrefshort = ... %previous and current segments

119

g_sigref(g_ref_start+g_ref_index_vec);

g_temp = real(ifft(conj(fft(g_sigrefshort)).*...

64 fft(g_rxshort ,nfft)).'); %Correlation

g_corr_temp(g,:) = g_temp(Rmax +1:end); %half IFFT

gend

else %Have to account for remaining segments

%Smaller segment of rx as GPU variable

69 g_rx = gsingle(rx(end -(G-gg)*Rmax:end));

g_sigref = gsingle(sigref(end -(G-gg+1)*Rmax:end));

gfor g = gg:G-1 %parallelize FFT in segments

g_rx_start = (g-gg)*g_Rmax; %Start index for rx seg

74 g_ref_start = (g-gg)*g_Rmax; %Start index for ref seg

g_rxshort = g_rx(g_rx_start+g_rx_index_vec); %rx seg

g_sigrefshort = ... %previous and current segments

g_sigref(g_ref_start+g_ref_index_vec);

g_temp = real(ifft(conj(fft(g_sigrefshort)).*...

79 fft(g_rxshort ,nfft)).'); %Correlation

g_corr_temp(g,:) = g_temp(Rmax +1:end); %half IFFT

gend

end

end

84 corr_temp = [temp(Rmax +1:end);double(g_corr_temp)];%Gather on CPU

corr = sum(corr_temp); %Accumulate (add the vectors)

clear corr_temp temp g_* gpu_hook

return

120

Listing B.7. This function performs cross correlation on the GPU using MATLAB®’s

GPU interface.

function [corr] = correlate_no_loop_GPU(g_sigref ,rx,L,G)

%%%

3 % This function performs the cross correlation of the received

% signal with the generated reference signal for a given

% velocity. It splits the signal into bite -size chunks in order

% to parallelize the fft processing. The construct for splitting

% the fft came from an article by Dr. Michal Meller titled

8 % "Some Aspects of Designing Real -Time Digital Correlators

% for Noise Radars ." 2010 IEEE

%

% Inputs:

% g_sigref - ref signal generated using interpFaster_GPU () (mx)

13 % rx - receive signal

% L - number of range bins

% G - number of segments signals split for fft processing

%

% Output:

18 % corr - correlation results with L range bins for given

% reference signal

%

% Author: Capt T. Joel Thorson - 18 October 2011

%%%

23 % tic

%% Reshape rx and sigref into matices

% The matrices will consist of G vectors of lenght 2*L. The

% first L in sigref will consist of the previous segment and the

28 % second L will consist of the "current" segment. The first L of

% the rx vectors consist of the current segment and the second L

121

% will consist of zeros.

g_sigref_top = [parallel.gpu.GPUArray.zeros(L,1,'single ') ...

33 g_sigref (:,1:G-1)]; %top half

g_sigref_mx = [g_sigref_top; g_sigref];

clear g_sigref g_sigref_top

g_rx = gpuArray(rx); %Added this here but only works w/ 6 GB GPU

38

%% Perform correlation on matrices using FFT.

% Ideally all G vectors will be correlated at the same time ,

% requiring a simple sum at the end to produce the results , but

% there is not enough memory in the GPU , so it must split

43

K = 8; %number of groups to split into

g_corr_temp = parallel.gpu.GPUArray.zeros(L,1,'single ');

for k = 1:K

g_sigref_short = g_sigref_mx (:,(k-1)*G/K+1:k*G/K);

48 % g_rx_short = gpuArray(rx(:,(k-1)*G/K+1:k*G/K));

%Uncomment above when using 4 GB GPU

g_rx_short = g_rx(:,(k-1)*G/K+1:k*G/K);

%Comment out above when not using 6 GB GPU

g_sigref_fft = fft(g_sigref_short);

53 clear g_sigref_short

g_sigref_fft_conj = conj(g_sigref_fft);

clear g_sigref_fft;

g_rx_fft = fft(g_rx_short);

clear g_rx_short

58 g_dual_fft = g_sigref_fft_conj .* g_rx_fft;

clear g_sigref_fft_conj g_rx_fft

g_temp = ifft(g_dual_fft);

clear g_dual_fft

122

g_temp = g_temp(L+1:end ,:);

63 g_corr_temp = g_corr_temp + sum(g_temp ,2);

clear g_temp

end

corr = gather(real(g_corr_temp .'));

% toc

68 return

123

Listing B.8. This function runs the AFIT RNR Simulink® model.

function [snr_calc ,snr_sim ,snr_meas] = ...

2 AFIT_RNR(unit ,pol ,r,time ,horn)

%%%

% Description: This function simulates the AFIT random noise

% radar (RNR)by calling a Simulink model. The Simulink model

% simulates each of the hardware components in the RNR , the

7 % target environment , system noise , and the analog -to-digital

% conversion. It then uses the same signal processing

% architecture as implemented in the AFIT RNR. The results of

% the simulations are compared with measured data collected by

% Capt T. Joel Thorson in November 2011-January , 2012. The

12 % model can simulate more than one target , but only one target

% was used when collecting measurements. Thus , this function is

% limited to only a single target. The model can be modified

% to simulate moving targets as well , but does not have

% measurements for comparison.

17 %

% Inputs:

% unit - The RNR box number used for measurements (3 or 5)

% pol - The polarization of antennas used for measurments

% ('HH' or 'VV ')

22 % r - The distance from RNR to target used for measurements

% (6 or 8) m

% time - Measurement window (1 or 2) for 1.0 and 2.23 microsecs

% horn - Was the standard gain horn used in place of the LPAs?

% (0 if LPAs used , 1 if horn used)

27 %

% Outputs:

% snr_calc - Calculated (using RRE) SNR at input to ADC

% snr_sim - Simulated SNR at input to ADC

124

% snr_meas - Measured SNR at input to ADC

32 %

% Subfunctions required:

% peakfinderN_mod () - used to plot smooth correlation results

%

% Author:

37 % Capt T. Joel Thorson , modified from original by

% Capt John Priestly , 19 January 2012

%%%

%% SET MEASUREMENT PARAMETERS (To compare to Model)

42 % This can be turned into function inputs later

% unit = 3; %Took measurements on unit 3 and 5

% pol = 'VV '; %Took measurements using HH and VV polarization

% r = 8; %Took measurements at r = 6 and 8 meters

47 % time = 1; %Either 1 or 2 for 1 or 2.23 microsec collect

% horn = 1; %horn antenna used? (0 if no, 1 if yes)

if time == 2;

T = 2.23e-6; %Set collection/simulation time

52 else

time = 1; %1 microsecond is default and AFIT RNR time

T = 1e-6; %set collection/simulation time

end

57 %% PREPARE SIMULINK MODEL

model = 'AFIT_RNR_model '; %model name

load_system(model) %load model

inputs =[]; %no inputs for simulink model

62 options = []; %no options for simulink model

125

warning off all %turn off warnings

%% SET INITIAL PARAMETERS

67 fs = 4e9; %Sample freq of analog components in Hz

df = (1/T); %Frequency resolution

f = (0:df:fs); %freq row vector in Hz

f1 = (0:df:fs+3e9)/10ˆ6; %freq after delay blks change by 3 GHz

L = length(f);

72

db_offset = pow2db(df); %for conversion from dBm/df to dBm/Hz

rx_fs = 1.5e9; %sample rate of DCR receiver (ADC)

77 %% ANTENNA GAIN (Based on Measured S11 by Lt Ludwig)

%%%

% Note: The signal that propogates through the simulink model is

% a voltage. So for all gain blocks , the dB gain must be

% converted to linear using 10ˆ(G_db /20) or sqrt(db2pow(G_db)).

82 %%%

if horn == 0

% LPA Antenna Gain

87 filename = 'LPA_antenna.xls';

S11 = xlsread(filename); %Antenna reflection curve

freq_s11 = S11(:,1); %Frequencies in Hz

freq_s11(freq_s11 >fs) = []; %Only want freq < fs

reflect = S11 (1: length(freq_s11) ,2);%Amplitude in dB

92 pass = -reflect; %Assumed (unscaled) transmission through ant

gain = pass -10; %Scaled to avg ¬6 dB

Gt_db = interp1(freq_s11 ,gain ,f); %Gain in dB @ each sample

126

else

% Standard Gain Horn Antenna Gain (uncomment as required)

97 filename = 'Standard_Gain.xls';

mx = xlsread(filename); %freq and gain info

freq_std = mx(:,1)*1e9; %Frequencies in Hz

freq_std(freq_std >fs) = []; %Only want freq < fs

gain_std = mx(1: length(freq_std) ,2);%Gain in dB

102 Gt_db = interp1(freq_std ,gain_std ,f);%Gain in dB @ each samp

Gt_db = Gt_db; %adjust gain

end

% Convert Gain in dB to linear as applied to voltage signal

107 Gt_lin = sqrt(db2pow(Gt_db)); %Linear gain @ each sampl

Gt_lin(isnan(Gt_lin)) = 0; %find NaN 's and set to 0

% Gt_lin = sqrt(db2pow (6))*ones(1,L); %uncomment for constant G

112 % Antenna gain is function of frequency. Apply gain vector here.

global Gain_Tx

Gain_Tx.signals.values = Gt_lin ';

Gain_Tx.signals.dimensions = 1;

Gain_Tx.time = [];

117

global Gain_Rx

convert = sqrt(1e-6/T);%due to change in freq resolution in model

Gain_Rx.signals.values = Gt_lin '* convert;

Gain_Rx.signals.dimensions = 1;

122 Gain_Rx.time = [];

global LNAGain

freq_lna = load('LNAresponse.mat','X1');

Glna = load('LNAresponse.mat','Y1');

127

127 Glna_db = interp1(freq_lna.X1 ,Glna.Y1 ,(0:df:fs+3e9));

Glna_lin = sqrt(db2pow(Glna_db));

Glna_lin(isnan(Glna_lin)) = 0;

LNAGain.signals.values = Glna_lin ';

LNAGain.signals.dimensions = 1;

132 LNAGain.time = [];

%% DETERMINE RADAR RANGE EQUATION PARAMETERS

%Signal Parameters

137 c = 299792458; %speed of light (m/s)

RefDelay = (1.7) *2/c; %propagation delay of system

delay = 2*r/c - RefDelay; %free space delay for each range

alpha = sqrt (1/((4* pi)ˆ3*rˆ4)); %free space path loss

w = 2*0.3048; %width of flat target (2 ft) in m

142 h = w; %target is square

A = 4*pi*wˆ2*hˆ2; %numerator of RCS eq.

B = 400e6; %bandwidth

Grcs = sqrt(A*B*T); %target gain factor

147 % Noise parameters

k = 1.38e-23; %Boltzmann 's constant

T0 = 290; %standard temperature

F_db = 2.6+0.8+0.8; %Noise Figs in dB (Filters/LNAs)

F = db2pow(F_db); %Noise Figure

152 system_noise = sqrt(k*T0*F*B); %Additive system wgn per Hz

% LNA values (20 dB LNAs)

G_lna_db = 20; %Half gain in dB (voltage signal)

G_lna = sqrt(db2pow(G_lna_db)); %Linear gain of each LNA

157

% Noise Power: Data sheet has P=.01W, corresponding to -82 dBm/Hz

128

% To get linear gain value applied to voltage signal and

% corresponding to noise power , the Gain in dB/df is

% -82 dBm/Hz - 30 + db_offset = -112 dB/Hz + db_offset =...

162 % = P_dB in dB/df

P = 10ˆ((-82 -30+ db_offset)/20);

% P = 0; %Transmitter Off

167 %% ESTIMATE ENVIRONMENTAL LOSSES

% Losses may be due to multiplath , antenna coupling , etc.

if horn == 0

if strcmp(pol ,'HH') == 1

EnvLoss_db = 38; %Scaled for LPA HH pol

172 EnvLoss = sqrt(db2pow(-EnvLoss_db));

else

EnvLoss_db = 23; %Scaled for LPA VV pol

EnvLoss = sqrt(db2pow(-EnvLoss_db));

end

177 else

if strcmp(pol ,'HH') == 1

EnvLoss_db = 28; %Scaled for Horn HH pol

EnvLoss = sqrt(db2pow(-EnvLoss_db));

else

182 EnvLoss_db = 31; %Scaled for Horn VV pol

EnvLoss = sqrt(db2pow(-EnvLoss_db));

end

end

187 %% SET SIMULINK PARAMETERS AND RUN THE SIMULATION

set_param ([model ,'/Noise Source/Noise Power'],...

'Gain',num2str(P)); %set noise signal variance

129

set_param ([model ,...

192 '/Direct Conversion Receiver/Pulse Generator '],...

'Period ',num2str (1/ rx_fs)); %set sample rate of ADC

set_param ([model ,'/System Noise/Noise Power'],...

'Gain',num2str(system_noise*convert)); %set system noise var

set_param ([model ,'/LNA 1']...

197 ,'Gain',num2str(G_lna)); %set gain value of LNA

set_param ([model ,'/LNA 2']...

,'Gain',num2str(G_lna)); %set gain value of LNA

set_param ([model ,'/Environment/Delay',num2str (1)],...

'DelayTime ',num2str(delay)); %set target range

202 set_param ([model ,'/Environment/PathLoss ',num2str (1)],...

'Gain',num2str(alpha*convert)); %set target path loss

set_param ([model ,'/Environment/RCS',num2str (1)],...

'Gain',num2str(Grcs)); %set target gain factor

set_param ([model ,'/Environment/EnvLoss '],...

207 'Gain',num2str(EnvLoss)); %set target gain factor

tic

tout = sim(model , T, options , inputs); %run simulation

toc

212

%% LOAD MEASURED SIGNALS (averages) OF AFIT RNR

% Load TX path data

filename = ['Splitter_100avg_unit ',num2str(unit),'.xls'];

217 Yavg = xlsread(filename); %Values in dBm/MHz

Yavg = Yavg -10* log10 (10ˆ6); %Convert to dBm/Hz

Yavg_tx = Yavg;

favgmax = 2000; %Max freq of average (MHz)

favg = (0: favgmax/length(Yavg):favgmax -favgmax/length(Yavg));

222

130

filename = ['Source_100avg_unit ',num2str(unit),'.xls'];

Yavg = xlsread(filename); %Values in dBm/MHz

Yavg = Yavg -10* log10 (10ˆ6); %Convert to dBm/Hz

Yavg_S = Yavg;

227

filename = ['BPF_100avg_unit ',num2str(unit),'.xls'];

Yavg = xlsread(filename); %Values in dBm/MHz

Yavg = Yavg -10* log10 (10ˆ6); %Convert to dBm/Hz

Yavg_tx_bpf = Yavg;

232

%Load RX path data

if horn == 0

filename = ['2ftsq_',num2str(r),'m_',pol ,'_rx_ant_100avg_ ' ,...

num2str(unit),'_',num2str(time),'.xls'];

237 Yavg = xlsread(filename); %Values in dBm/df

Yavg = Yavg -db_offset; %Convert to dBm/Hz

Rx_ant = Yavg;

filename = ['2ftsq_',num2str(r),'m_',pol ,'_rx_adc_100avg_ ' ,...

242 num2str(unit),'_',num2str(time),'.xls'];

Yavg = xlsread(filename); %Values in dBm/df

Yavg = Yavg -db_offset; %Convert to dBm/Hz

Rx_adc = Yavg;

end

247

%Load Noise data

filename = 'System_noise.xls';

Yavg = xlsread(filename); %Values in dBm/df

Yavg = Yavg -db_offset; %Convert to dBm/Hz

252 Noise_sys = Yavg;

131

%% LOAD MEASURED SIGNALS (averages) USING STANDARD GAIN HORN

257 %Load RX path data

if horn == 1

filename = ['Horn_',num2str(r),'m_',pol ,'_rx_ant_100avg_ ' ,...

num2str(unit),'_',num2str(time),'.xls'];

Yavg = xlsread(filename); %Values in dBm/df

262 Yavg = Yavg -db_offset; %Convert to dBm/Hz

Horn_ant = Yavg;

filename = ['Horn_',num2str(r),'m_',pol ,'_rx_adc_100avg_ ' ,...

num2str(unit),'_',num2str(time),'.xls'];

267 Yavg = xlsread(filename); %Values in dBm/df

Yavg = Yavg -db_offset; %Convert to dBm/Hz

Horn_adc = Yavg;

end

272 %% LOAD SIMULATED SIGNAL AT DIFFERENT STAGES IN THE MODEL

LL = length(Ref.signals.values);

L1 = length(rx_env.signals.values);

freq = (0: rx_fs/LL:rx_fs -rx_fs/LL)/10ˆ6; %ADC freq vec in MHz

277 f = f./10ˆ6; %frequency in MHz for plotting

% For the following signals: convert time domain voltage signals

% to frequency domain signals in dBm/df then dBm/Hz

Noise = 20* log10(abs(fft(Noise.signals.values)))+30 -10* log10(L);

282 Noise = Noise -db_offset; %Convert to dBm/Hz

N1 = 20* log10(abs(fft(Noise1.signals.values)))+30 -10* log10(L);

N1 = N1 -db_offset; %Convert to dBm/Hz

N_bpf = ...

20* log10(abs(fft(Noise_bpf.signals.values)))+30 -10* log10(L);

132

287 N_bpf = N_bpf -db_offset; %Convert to dBm/Hz

TX_split = ...

20* log10(abs(fft(tx_split.signals.values)))+30 -10* log10(L);

TX_split = TX_split -db_offset; %Convert to dBm/Hz

TX = 20* log10(abs(fft(tx.signals.values)))+30 -10* log10(L);

292 TX = TX -db_offset; %Convert to dBm/Hz

RX_env = ...

20* log10(abs(fft(rx_env.signals.values)))+30 -10* log10(L1);

RX_env = RX_env -db_offset; %Convert to dBm/Hz

RX = 20* log10(abs(fft(rx.signals.values)))+30 -10* log10(L1);

297 RX = RX -db_offset; %Convert to dBm/Hz

RX_bpf = ...

20* log10(abs(fft(rx_bpf.signals.values)))+30 -10* log10(L1);

RX_bpf = RX_bpf -db_offset; %Convert to dBm/Hz

RX_adc = ...

302 20* log10(abs(fft(rx_adc.signals.values)))+30 -10* log10(L1);

RX_adc = RX_adc -db_offset; %Convert to dBm/Hz

SYS_NOISE = ...

20* log10(abs(fft(sys_noise.signals.values)))+30 -10* log10(L);

SYS_NOISE = SYS_NOISE -db_offset; %Convert to dBm/Hz

307 clear tx* rx*

half = floor(L/2); %only need one side of fft spectrum to plot

half1 = floor(L1/2);

half2 = floor(LL/2);

312

%% DETERMINE SNR FROM CALCULATION , SIMULATION , AND MEASUREMENTS

% Calculate SNR as function of frequency and as integrated signal

fl = 400; %Low frequency of pass band in MHz

317 fh = 800; %High frequency of pass band in MHz

fl_ind = floor (400*T/1e-6); %Low freq index

133

fh_ind = floor (800*T/1e-6); %High freq index

%Simulated Signal

322 noise_sim = mean(SYS_NOISE(fl_ind:fh_ind))+pow2db(B); %Int noise

Pr_sim = mean(RX_adc(fl_ind:fh_ind))+pow2db(B); %Integrated rx

snr_sim = Pr_sim -noise_sim; %Simulated SNR

%Measured Signal

327 if horn == 0

ind_l = ge(favg ,400) '; %Get from 400 MHz to end

ind_h = le(favg ,800) '; %Get from 0 to 800 MHz

Pr_pass = Rx_adc .* ind_l.* ind_h;

Pr_pass(Pr_pass == 0) = [];

332 Pr_meas = mean(Pr_pass)+pow2db(B); %Integrated receive power

noise_pass = Noise_sys .*ind_l .*ind_h;

noise_pass(noise_pass == 0) = [];

noise_meas = mean(noise_pass)+pow2db(B); %Integrated noise

% noise_meas = mean(Rx_adc (1:120)+db_offset);

337 snr_meas = Pr_meas -noise_meas; %Measured SNR

end

%Measured Signal (Standard Gain Horn)

if horn == 1;

342 ind_l = ge(favg ,400) '; %Get from 400 MHz to end

ind_h = le(favg ,800) '; %Get from 0 to 800 MHz

Pr_pass = Horn_adc .* ind_l.* ind_h;

Pr_pass(Pr_pass == 0) = [];

Pr_meas = mean(Pr_pass)+pow2db(B); %Integrated receive power

347 noise_pass = Noise_sys .*ind_l .*ind_h;

noise_pass(noise_pass == 0) = [];

noise_meas = mean(noise_pass)+pow2db(B); %Integrated noise

% noise_meas = mean(Rx_adc (1:120)+db_offset);

134

snr_meas = Pr_meas -noise_meas; %Measured SNR

352 end

%Calculated SNR

bpf_loss = 2; %bandpass loss due to filter in dB

splitter_loss = 3.6; %power loss due to power splitter in dB

357 Pt_calc_f = -82-30-bpf_loss -splitter_loss; %TX power at ant dB/Hz

Pt_calc = Pt_calc_f + pow2db(B); %TX power in 400 MHz signal dB

if horn == 0

G_calc = 6; %constant antenna gain in dB for LNA

else

362 G_calc = 12; %constant gain for horn

end

G_calc_f = ones (1 ,401);

lambda_db_f = pow2db(c./((fl:fh)*10ˆ6));%Vector of wavelengths dB

lambda_db = pow2db(c/600e6); %center freq wavelength in dB

367 T_db = pow2db(T); %measurement window in dB

rcs_db_f = pow2db (4*pi*wˆ2*hˆ2) - 2.* lambda_db_f; %RCS vector dB

rcs_db = pow2db (4*pi*wˆ2*hˆ2) - 2* lambda_db; %RCS scalar dB

snr_calc_f = Pt_calc_f + 2* G_calc_f + 2.* lambda_db_f +...

rcs_db_f + pow2db(B) + T_db - (pow2db ((4*pi)ˆ3)...

372 + pow2db(rˆ4) + pow2db(system_noise ˆ2)); %in dB/Hz

snr_calc = Pt_calc + 2* G_calc + 2* lambda_db + rcs_db + ...

pow2db(B) + T_db - (pow2db ((4*pi)ˆ3) + pow2db(rˆ4) + ...

pow2db(system_noise ˆ2)); %in dB

377 %% CORRELATION PROCESSING (hardware max is T = 1 microsec)

if time == 1 %Don 't perform correlation if T not 1 microsec

%% INTERPOLATION JUST LIKE THE A/D BOARD

interp_fs = 6e9; %match to receiver interpolation (GSa/s)

382 interp_t = 0:1/(interp_fs):Ref.time(end); %new time axis

135

interp_Rx = interp1(Rx.time ,(Rx.signals.values) ,...

interp_t ,'spline '); %interp Rx

interp_Ref = interp1(Ref.time ,(Ref.signals.values) ,...

interp_t ,'spline '); %interp Ref

387

%% SIMULINK MODEL CORRELATION PROCESSING

TxSig = interp_Ref; %Reference signal

RxSig = interp_Rx; %Receive signal

t = interp_t; %time axis

392 XcorrLen = 5e-7; %correlation window (integration time)

averages = floor(T/XcorrLen); %# corrs to avg for each range est

averages = 1; %when comparing to measurements , 1

XcorrN = find(t>XcorrLen ,1) -2; %samples in correlation

397 num_xcorr = floor(t(end)/XcorrLen); %# corr windows available

TxSig = TxSig(1: XcorrN*num_xcorr); %remove excess samples

RxSig = RxSig(1: XcorrN*num_xcorr); %remove excess samples

t = t(1: XcorrN*num_xcorr); %remove excess samples

TxSig = reshape(TxSig ,XcorrN ,[]) '; %reshape mx

402 RxSig = reshape(RxSig ,XcorrN ,[]) '; %reshape mx

t = reshape(t,XcorrN ,[]) '; %reshape t matrix

Rxy = zeros(averages ,XcorrN *2-1); %setup Xcorr matrix

result.tar_loc = []; %setup target location array

407 result.tar_mag = []; %setup target magnitude array

rows = 1: averages;

%step through each Tx/Rx pair in the current block of signals

for j = 1: length(rows),

412 Rxy(j,:) = abs(xcorr(RxSig(rows(j) ,:),TxSig(rows(j) ,:)));

end %compute cross -corrlation

136

%find mean Xcorr for the current block of signals

meanRxy = abs(mean(Rxy(:,XcorrN:end) ,1));

417 meanRxy = meanRxy /1e-3; %convert to mW

%Determine the cross correlation with interpolated peaks

[¬,crosscorr ,¬,¬] =peakfinderN_mod(meanRxy ,1e-3,1, interp_fs *1e3);

422 dsample = c/(2* interp_fs); %distance between each sample (m)

R = 0:c/(2* interp_fs):length(crosscorr)*dsample -dsample; %vector

%% LOAD MEASURED CORRELATION RESULTS OF AFIT RNR

427 filename = ['unit',num2str(unit),'_',num2str(r),'m_',pol];

load(filename ,'trace');

Corr_meas = trace;

filename = ['unit',num2str(unit),'_',pol ,'_background '];

432 load(filename ,'trace');

Corr_bg = trace;

R_meas = 0:c/(2* interp_fs):length(Corr_meas)*dsample -dsample;

437 %% LOAD MEASURED CORRELATION RESULTS (FROM STANDARD GAIN HORN)

filename = ['Horn_unit ',num2str(unit),'_',num2str(r),'m_',pol];

load(filename ,'trace');

Horn_Corr_meas = trace;

442

filename = ['Horn_unit ',num2str(unit),'_',pol ,'_background '];

load(filename ,'trace');

Horn_Corr_bg = trace;

137

447 %% GET CORRELATION RESULTS (Simulated and Measured)

N = length(Ref.signals.values); %Number of samples in signal

%Simulated peak -to-average sidelobe ratio

452 Skm2 = abs(xcorr(Rx.signals.values ,Ref.signals.values)).ˆ2;

Skm2 = Skm2(N:end); %Second half of xcorr

Corr_sim_db = pow2db(Skm2/max(Skm2)); %Normalized correlation

Avg_sidelobe_sim = mean(Corr_sim_db (1:600));

range_vec = Ref.time.*c./2; %Range vector for plot

457 R_10 = R_meas(R_meas ≤ 10); %Not concerned beyond 10 m

N_10 = length(R_10); %Number of samples to 10 m

crosscorr_db = pow2db(abs(crosscorr/max(crosscorr (1: N_10))).ˆ2);

%Measured peak -to-average sidelobe ratio

462 Corr_db = pow2db(abs(Corr_meas/max(Corr_meas (1: N_10))).ˆ2);

Corr_meas_db = pow2db(abs((Corr_meas -Corr_bg)/...

max(Corr_meas (125: N_10)-Corr_bg (125: N_10))).ˆ2);%Norm. corr.

Avg_sidelobe_meas = mean(Corr_meas_db (1:2700)); %Avg sidelobe

467 %Measured peak -to-average sidelobe ratio (Standard Gain Horn)

Horn_Corr_db = pow2db(abs(Horn_Corr_meas /...

max(Horn_Corr_meas (1: N_10))).ˆ2);

Horn_Corr_meas_db = pow2db(abs((Horn_Corr_meas -Horn_Corr_bg)/...

max(Horn_Corr_meas (1: N_10) -...

472 Horn_Corr_bg (1: N_10))).ˆ2); %Normalized correlation

Horn_Avg_sidelobe_meas = mean(Horn_Corr_meas_db (1:2700));

end

end

138

Bibliography

[1] Electronic Warfare and Radar Systems Engineering Handbook. Naval Air Warfare
Center Weapons Division, 1999.

[2] Axelsson, S. R. J. “On the Theory of Noise Doppler Radar”. Geoscience and
Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 In-
ternational, volume 2, 856–860 vol.2. 2000.

[3] Axelsson, S. R. J. “Noise Radar for Range/Doppler Processing and Digital
Beamforming Using Low-bit ADC”. Geoscience and Remote Sensing, IEEE
Transactions on, 41(12):2703–2720, 2003.

[4] Axelsson, S. R. J. “Noise Radar Using Random Phase and Frequency Modu-
lation”. Geoscience and Remote Sensing, IEEE Transactions on, 42(11):2370–
2384, 2004.

[5] Axelsson, Sune R. J. “Generalized Ambiguity Functions for Ultra Wide Band
Random Waveforms”. Radar Symposium, 2006. IRS 2006. International, 1–4.
2006.

[6] Bell, D. C. and R. M. Narayanan. “ISAR Turntable Experiments Using a Co-
herent Ultra Wide-band Random Noise Radar”. 1764–1767. July 1999 1999.

[7] Dawood, M. and R. M. Narayanan. “Ambiguity Function of an Ultrawideband
Random Noise Radar”. Antennas and Propagation Society International Sym-
posium, 2000. IEEE, volume 4, 2142–2145 vol.4. 2000.

[8] Dawood, M. and R. M. Narayanan. “Generalised wideband ambiguity function
of a coherent ultrawideband random noise radar”. Radar, Sonar and Navigation,
IEE Proceedings -, 150(5):379–386, 2003. ID: 1.

[9] Garmatyuk, D. S. and R. M. Narayanan. “SAR Imaging Using a Coherent
Ultrawideband Random Noise Radar”. William Miceli I. (editor), SPIE, volume
3810, 223–230. 1999.

[10] Guosui, Liu, Gu Hong, and Su Weimin. “Development of Random Signal
Radars”. Aerospace and Electronic Systems, IEEE Transactions on, 35(3):770–
777, 1999.

[11] Kay, Steven. Intuitive Probability and Random Processes using MATLAB.
Springer, New York, NY, 2006. ISBN 978-0387241579.

[12] Kulpa, K., K. Lukin, W. Miceli, and T. Thayaparan. “Signal Processing in Noise
Radar Technology [Editorial]”. Radar, Sonar Navigation, IET, 2(4):229–232,
2008.

139

[13] Kulpa, Krzysztof. Continuous Wave Radars, Monostatic, Multistatic and Net-
work, volume 2 of Advances in Sensing with Security Applications, 215–242.
Springer Netherlands, 2006.

[14] Kwag, Y. K. and C. H. Chung. “UAV Based Collision Avoidance Radar Sen-
sor”. Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE
International, 639–642. 2007.

[15] Lai, C. P., R. M. Narayanan, and G. Culkowski. “Through Wall Surveillance
Using Ultrawideband Random Noise Radar”. 25th Army Science Conference,
1–4. Nov. 2006.

[16] Levanon, N. and E. Mozeson. Radar Signals. Wiley-IEEE Press, 2004. ISBN
978-0471473787.

[17] Li, Zhixi and R. M. Narayanan. “Doppler Visibility of Coherent Ultrawide-
band Random Noise Radar Systems”. Aerospace and Electronic Systems, IEEE
Transactions on, 42(3):904–916, 2006.

[18] Lievsay, James R. “Simultaneous Range/Velocity Detection with an Ultra-
wideband Random Noise Radar Through Fully Digital Cross-correlation in the
Time Domain”, Master’s Thesis, Air Force Institute of Technology, 2011.

[19] Lievsay, James R. and Geoffrey A. Akers. “Moving Target Detection Via Digital
Time Domain”. 2011.

[20] Ludwig, Matt T. “UHF Antenna Redesign for AFIT Random Noise Radar”,
Master’s Thesis, Air Force Institute of Technology, 2012.

[21] Lukin, K. A., A. A. Mogyla, Yu A. Alexandrov, O. V. Zemlyaniy, T. Lukina, and
Yu Shiyan. “W-band Noise Radar Sensor for Car Collision Warning Systems”.
Physics and Engineering of Millimeter and Sub-Millimeter Waves, 2001. The
Fourth International Kharkov Symposium on, volume 2, 870–872 vol.2. 2001.

[22] Lukin, K. A. and R. M. Narayanan. “Fifty Years of Noise Radar”. Physics
and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW),
2010 International Kharkov Symposium on, 1–3. 2010.

[23] Lukin, Konstantin A. “Noise Radar with Correlation Receiver as the Basis of
Car Collision Avoidance System”. Microwave Conference, 1995. 25th European,
volume 1, 506–507. 1995.

[24] Meller, M. “Some Aspects of Designing Real-time Digital Correlators for Noise
Radars”. Radar Conference, 2010 IEEE, 821–825. 2010. ISBN 1097-5659.

[25] Narayanan, R. M. and M. Dawood. “Doppler Estimation Using a Coherent
Ultrawide-band Random Noise Radar”. Antennas and Propagation, IEEE Trans-
actions on, 48(6):868–878, 2000.

140

[26] Narayanan, Ram M., Yi Xu, Paul D. Hoffmeyer, and John O. Curtis. “Design,
Performance, and Applications of a Coherent Ultra-wideband Random Noise
Radar”. Optical Engineering, 37(6):1855–1869, June 1998 1998. URL http:

//link.aip.org/link/?JOE/37/1855/1.

[27] Nelms, Matthew E. “Development and Evaluation of a Multistatic Ultrawide-
band Random Noise Radar”, Master’s Thesis, Air Force Institute of Technology,
2010.

[28] Oppenheim, A. and R. Schafer. Discrete-time Signal Processing. Prentice Hall,
Upper Saddle River, NJ, 3rd edition, 2009. ISBN 978-0131988422.

[29] Pace, Philip E. Detecting and Classifying Low Probability of Intercept Radar,
Second Edition. Artech House, Boston, MA, 2 edition, 2009. ISBN 978-1-59693-
234-0.

[30] Priestly, John A. “AFIT NoNET Enhancements: Software Model Development
and Optimization of Signal Processing Architecture”, Master’s Thesis, Air Force
Institute of Technology, 2011.

[31] Richards, Mark A., James A. Scheer, and William A. Holm. Principles of Modern
Radar: Basic Principles. Scitech Publishing, Inc., Raleigh, NC, 2010. ISBN
9781891121524.

[32] Rihaczek, August W. “Delay-Doppler Ambiguity Function for Wideband Sig-
nals”. Aerospace and Electronic Systems, IEEE Transactions on, AES-3(4):705–
711, 1967.

[33] Schmitt, A. “Radar Imaging with a Network of Digital Noise Radar Systems”,
Master’s Thesis, Air Force Institute of Technology, 2009.

[34] Schmitt, A. and P. Collins. “Demonstration of a Network of Simultaneously
Operating Digital Noise Radars [Measurements Corner]”. Antennas and Propa-
gation Magazine, IEEE, 51(2):125–130, 2009.

[35] Taylor, James D. Ultra-wideband Radar Technology. CRC Press, Boca Raton,
Florida, 2001. ISBN 978-0-8493-4267-7.

[36] Thayaparan, T., M. Dakovic, and L. Stankovic. “Mutual Interference and Low
Probability of Interception Capabilities of Noise Radar”. Radar, Sonar Naviga-
tion, IET, 2(4):294–305, 2008.

[37] Thayaparan, T. and C. Wernik. Noise Radar Technology Basics. Technical
Report TM 2006-266, Defence Research and Devlopment Canada - Ottawa, 2006.

[38] Theron, I. P., E. K. Walton, S. Gunawan, and Lixin Cai. “Ultrawide-band Noise
Radar in the VHF/UHF Band”. Antennas and Propagation, IEEE Transactions
on, 47(6):1080–1084, 1999.

141

[39] Walden, R. H. “Analog-to-Digital Converter Survey and Analysis”. Selected
Areas in Communications, IEEE Journal on, 17(4):539–550, 1999.

[40] Weiss, L. G. “Wavelets and Wideband Correlation Processing”. Signal Processing
Magazine, IEEE, 11(1):13–32, 1994.

[41] Woodward, Philip M. Probability and Information Theory, with Applications to
Radar. McGraw-Hill, New York, 1953. ISBN 0890061033.

[42] Xu, X. and R. M. Narayanan. “FOPEN SAR Imaging UWB Step-frequency and
Random Noise Waveforms”. IEEE Transactions on Aerospace and Electronic
Systems, 37(4):1287–1300, 2001.

[43] Xu, Yi, R. M. Narayanan, X. Xu, and J. O. Curtis. “Polarimetric Processing
of Coherent Random Noise Radar Data for Buried Object Detection”. IEEE
Transactions on Geosciences and Remote Sensing, 39(3):467–478, Mar. 2001.

142

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2012 Master’s Thesis Aug 2010 — Mar 2012

Simultaneous Range-Velocity Processing and SNR Analysis of AFIT’s
Random Noise Radar

Thorson, Timothy J, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GE/ENG/12-40

Intentionally Left Blank

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

This paper presents two research objectives aimed at advancing the AFIT RNR signal processing algorithm and modeling
capability toward the overarching goal of performing collision avoidance on an autonomous vehicle. In both research
efforts, analytical, simulated, and measured results are provided and used to draw research conclusions. The first research
effort is aimed at reducing the memory required for 2D processing in the time domain in order to distribute the
processing algorithm across hundreds of processors on a GPU. Distributed processing reduces the overall 2D processing
time and the feasibility of a near real-time implementation is studied. The second effort consists of improving a

Simulink® model of the AFIT RNR. Each component of the AFIT RNR, as well as the target environment, is modeled
and compared to measured results. A robust model will provide a useful tool to study the signal-to-noise ratio (SNR) of
the RNR at all points within the radar system.

Noise Radar, Collision Avoidance, Autonomous Navigation, Low Probability of Intercept Radar

U U U UU 156

Geoffrey A. Akers, Lt Col, USAF (ENG)

(937) 255-3636 x4659; geoffrey.akers@afit.edu

	AFIT-GE-ENG-12-40.pdf
	AFIT-GE-ENG-12-40.pdf
	AFIT-GE-ENG-12-40
	halfway.pdf
	image2012-02-21-112855-1
	AFIT-GE-ENG-12-40

	ThorsonThesis

